999 resultados para PT-RU ANODES


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A modified impregnation method was used to prepare highly dispersive carbon-supported PtRu catalyst (PtRu/C). Two modifications to the conventional impregnation method were performed: one was to precipitate the precursors ((NH4)(2)PtCl6 and Ru(OH)(3)) on the carbon support before metal reduction: the other was to add a buffer into the synthetic solution to stabilize the pH. The prepared catalyst showed a much higher activity for methanol electro-oxidation than a catalyst prepared by the conventional impregnation method. even higher than that of current commercially available, state-of-the-art catalysts. The morphology of the prepared catalyst was characterized using TEM and XRD measurements to determine particle sizes, alloying degree, and lattice parameters. Electrochemical methods were also used to ascertain the electrochemical active surface area and the specific activity of the catalyst.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

直接氧化一些有机小分子(如甲醇[1~9]和乙醇[10~14]等)的直接氧化燃料电池作为一种对环境友好的能源越来越引起人们的关注.三氧杂环己烷作为一种可再生的能源,可以从地球上存在的大量天然气中得到,来源广泛,价格低廉.三氧杂环己烷反应的基本结构如Scheme 1所示,相对乙醇而言,三氧杂环己烷不存在任何碳碳键,反应更易进行.目前广泛研究的直接氧化燃料电池均采用液体甲醇和S chem e 1 S tru ctu re of tr ioxane乙醇等作燃料,液体燃料的存储运输存在一定的安全隐患,一旦泄漏发生危险,后果非常严重,而三氧杂环己烷作为一种固体,可以有效地避免上述问题的发生,利于安全的储存和运输.Narayanan等[13]研究了三氧杂环己烷在Pt,Pt-Sn和Pt-Ru电极上的电化学行为及其在燃料电池中的应用.本文研究了三氧杂环己烷在不同浓度、不同温度和不同酸度时于光滑铂电极上的电化学行为,初步分析了三氧杂环己烷的反应机理.1实验部分1.1试剂与仪器采用Potentiostat/GalvanostatModel 273A恒电位仪(美国Princeton Applied Research公司),在传统的三...

Relevância:

80.00% 80.00%

Publicador:

Resumo:

将磷钼酸 (H4PMo12 O40 ·xH2 O ,PMo12 )作为一种添加剂 ,制备了直接甲醇燃料电池阳极Pt Ru/C PMo12 复合催化剂 ,并对甲醇在含有此复合催化剂的阳极上的氧化进行了电化学研究 .测试表明该添加剂降低了甲醇及其电氧化中间产物转化的活化能 ,改善了电极内部的质子传输状况 ,对甲醇的电化学氧化过程具有明显的促进作用 ,该复合催化剂与常规的Pt Ru/C催化剂相比 ,甲醇的阳极氧化电流提高了 46% .添加剂的这一效应可能与磷钼酸的Keggin结构有关

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, it was reported that the carbon-supported Pt-Ru(Pt-Ru/C) catalyst used as the anodic catalyst in the direct methanol fuel cell (DMFC) was synthesized with a two-step spray pyrolysis (SP) method using the Pt and Ru metal salt as the precursors and polyethylene glycol (PEG) with the different molecular weights (Mw= 200,600,and 1000 analytical reagent) as cosolvent. PEG as a cosolvent plays a crucial role in producing PtRu/C catalysts. It was found that the Mw of PEG could affect the electrocatalytic activity of Pt-Ru and the morphology of the Pt-Ru particles in the Pt-Ru/C catalysts prepared with this method. When the Mw of PEG is 600, the Pt-Ru particles in the Pt-Ru/C catalyst prepared with this method possess the small average size, narrow size distribution, uniform dispersion, and high electrochemically active specific surface area. The electrocatalytic activity of the Pt-Ru/C catalyst prepared with this method using the cosolvent PEG with Mw = 600 for the methanol oxidation is much higher than that of the commercial E-TEK Pt-Ru/C catalyst. Therefore, the two-step SP method is an excellent method for the preparation of the Pt-Ru/C catalyst used in DMFCs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pt金属是直接甲醇燃料电池(DMFC)常用的催化剂犤1~3犦。为了尽可能减少Pt金属用量,提高Pt的分散度,人们总是选择具有高表面积的基质,如石墨、碳黑、活性碳、分子筛、质子交换膜等,作为Pt金属的载体犤3~5犦。最初,人们以为载体的作用仅仅是提供表面积和多孔气体扩散电极的骨架,使Pt微粒可以有更大的比表面积与反应物接触,但是现在普遍认为犤1犦,当Pt金属负载在活性炭上时,它们中的催化性能有一部分应归结于金属和载体之间的相互作用,因此,载体的形貌及物理化学性质直接影响着催化剂对甲醇的电催化氧化活性。碳纳米管(CNTs)由于其拥有纳米级管腔结构、较高的比表面积、类石墨的多层管壁等特点,使它在做催化剂载体方面有着良好的应用前景犤6~9犦。CheGuangli等人犤6犦在探索CNTs的潜在用途时,曾研究了将Pt、Ru、PtRu等金属或合金沉积在CNTs的内壁,并讨论了其在DMFC上的潜在用途。本文通过液相化学还原的方法制得Pt载量为20%的Pt/CNTs催化剂,并研究了预处理对催化剂形貌、表面基团及其对甲醇电催化氧化性能的影响。1实验部分1.1试剂和仪器实验所用试剂均为分析纯,所有溶液均用三次蒸馏水配制。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

首次发现用电化学阴极还原 -阳极氧化法制得的 Pt-Ti Ox/Ti和 Pt-Ru-Ti Ox/Ti电极对甲醇氧化呈现出较高的电催化活性和稳定性 ,其中 Pt-Ru-Ti Ox/Ti电极比 Pt-Ti Ox/Ti电极具有更好的性能 .实验结果表明 ,这两种电极对甲醇氧化具有高电催化活性是由于 Pt、Ru得到了较好的分散 ,较好的稳定性可归结于Pt、Ru与 Ti Ox 协同作用导致弱的 CO吸附而使电极不易中毒 .

Relevância:

80.00% 80.00%

Publicador:

Resumo:

近年来在世界不同地区进行了风化过程中铂族元素的地球化学行为研究。作为中国西南部的第一个实例. 本文研究了云南西部菲红超基性岩体上发育的红土化风化剖面。矿物学和微量元素地球化学研究证明该风化壳 是超基性岩风化的结果。文中详细讨论了风化壳的地质、矿物学、红土化和铂族元素地球化学特征。结果表明, 风化壳的红土化程度不高,仍处于红色牯土阶段;风化壳上酃的表层土壤带和铁质牯土带中铂族元素总量至少富 集了3 57—7.盯倍,其中Ru和Pd的富集程度较大,Ix的富集程度中等,Pt和弛的富集程度较小,使得铂族元素 的配分模式由基岩的Pt富集型转变为风化壳的Ru-Pt富集型,证明红土化过程中铂族元素发生了分异。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present study, a method based on transmission-line mode for a porous electrode was used to measure the ionic resistance of the anode catalyst layer under in situ fuel cell operation condition. The influence of Nafion content and catalyst loading in the anode catalyst layer on the methanol electro-oxidation and direct methanol fuel cell (DMFC) performance based on unsupported Pt-Ru black was investigated by using the AC impedance method. The optimal Nafion content was found to be 15 wt% at 75 degrees C. The optimal Pt-Ru loading is related to the operating temperature, for example, about 2.0 mg/cm(2) for 75-90 degrees C, 3.0 mg/cm2 for 50 degrees C. Over these values, the cell performance decreased due to the increases in ohmic and mass transfer resistances. It was found that the peak power density obtained was 217 mW/cm(2) with optimal catalyst and Nafion loading at 75 degrees C using oxygen. (c) 2005 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Novel electrode structures for the direct methanol fuel cell (DMFC) based on Ti mesh are reported. A new anode with a hydrophilic structure prepared by coating Pt-Ru catalyst on Ti mesh using thermal decomposition showed a performance comparable to that of the conventional porous carbon-based structure one in DMFC, whilst a cathode with the same structure showed a poor performance. When a porous structure based on Ti mesh pre-coated with carbon was used as the cathode structure, the performance increased significantly to reach that of conventional carbon paper-based cathode. © 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A real-time Fourier transform infrared spectroscopy (FTIRS) analysis of the products of methanol oxidation in a prototype direct-methanol fuel cell operating at high temperatures (150 to 185°C) is reported here. The methanol oxidation products on platinum black and platinum-ruthenium catalyst surfaces were determined as a function of the fuel cell operating temperature, current density, and methanol/water mole ratio. Neither formaldehyde nor formic acid was detected in anode exhaust gas at all cell operating conditions. The product distributions of methanol oxidation obtained by on-line FTIRS are consistent with our previous results obtained by on-line mass spectroscopy under similar conditions. With pure methanol in anode feed, methanaldimethylacetal was found to be the main product, methyl formate and CO were also found. However, when water was present in the anode feed, the main product was CO , and the formation of methanaldimethylacetal and methyl formate decreased significantly with increase of the water/methanol mole ratio. Increase of cell operating temperature enhanced the formation of CO and decreased the formation of methanaldimethylacetal and methyl formate. Pt/Ru catalyst is more active for methanol oxidation and has a higher selectivity toward CO formation than Pt-black. Nearly complete methanol oxidation, i.e., the product was almost exclusively CO , was achieved using a Pt/Ru catalyst and a water/methanol mole ratio of 2 or higher in the anode feed at a temperature of 185°C or above.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The performance of noble metal (Pt, Ru, Ir)-promoted Co/MgAl(2)O(4) catalysts for the steam reforming of ethanol was investigated. The catalysts were characterized by energy-dispersive X-ray spectroscopy, Xray diffraction, UV-vis diffuse reflectance spectroscopy, temperature-programmed reduction, temperature-programmed oxidation and X-ray absorption near edge structure (XANES). The results showed that the formation of inactive cobalt aluminate was suppressed by the presence of a MgAl(2)O(4) spinel phase. The effects of the noble metals included a marked lowering of the reduction temperatures of the cobalt surface species interacting with the support. It was seen that the addition of noble metal stabilized the Co sites in the reduced state throughout the reaction. Catalytic performance was enhanced in the promoted catalysts, particularly CoRu/MgAl(2)O(4), which showed the highest selectivity for H(2) production. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a study of the electrocatalysis of ethanol oxidation reactions in an acidic medium on Pt-CeO(2)/C (20 wt.% of Pt-CeO(2) on carbon XC-72R), prepared in different mass ratios by the polymeric precursor method. The mass ratios between Pt and CeO(2) (3:1, 2:1, 1:1, 1:2, 1:3) were confirmed by Energy Dispersive X-ray Analysis (EDAX). X-ray diffraction (XRD) structural characterization data shows that the Pt-CeO(2)/C catalysts are composed of nanosized polycrystalline non-alloyed deposits, from which reflections corresponding to the fcc (Pt) and fluorite (CeO(2)) structures were clearly observed. The mean crystallite sizes calculated from XRD data revealed that, independent of the mass ratio, a value close to 3 nm was obtained for the CeO(2) particles. For Pt, the mean crystallite sizes were dependent on the ratio of this metal in the catalysts. Low platinum ratios resulted in small crystallites. and high Pt proportions resulted in larger crystallites. The size distributions of the catalysts particles, determined by XRD, were confirmed by Transmission Electron Microscope (TEM) imaging. Cyclic voltammetry and chronoamperometic experiments were used to evaluate the electrocatalytic performance of the different materials. In all cases, except Pt-CeO(2)/C 1:1, the Pt-Ceo(2)/C catalysts exhibited improved performance when compared with Pt/C. The best result was obtained for the Pt-CeO(2)/C 1:3 catalyst, which gave better results than the Pt-Ru/C (Etek) catalyst. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, a simple route to prepare carbon supported Pt/C, Pt:Ru/C, Pt:Mo/C and Pt:Ru:Mo/C catalysts is reported. The electrochemical properties of the several carbon materials used as substrates in the absence and in the presence of supported platinum and platinum alloys catalysts were investigated using cyclic voltammetry and employing the thin porous coating electrode technique. The activity of the dispersed catalysts composed of Pt/C with respect to the oxygen reduction and of alloy/C with respect to methanol oxidation was investigated using steady state polarization measurements. The performance with respect to the oxygen reduction reaction of the Pt/C catalyst prepared on heat-treated Vulcan carbon substrate is equivalent to that reported in the literature for the state-of-the-art electrocatysts. Pt:Ru:Mo/C samples prepared in this work presented the higher catalytic effect for methanol electro-oxidation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three nanostructured platinum-niobium supported on Vulcan XC-72R carbon black materials were prepared as catalysts for the ethanol electroxidation: (i) deposition of platinum and niobium on Vulcan XC-72R carbon black, (ii) platinum decorated on a mixture of commercial amorphous Nb2O5/carbon black, and (iii) the same than ii but using crystalline Nb2O5, by reduction of the precursors with sodium borohydride in ethanol. All the catalysts showed platinum crystal sizes in the range of 3-4 nm, with no or little modification of the lattice parameter. The analyses of the electronic structure from the XANES region of the XAS spectra displayed some interactions between platinum and niobium, despite the niobium was primarily in the form of pentoxide in all the catalysts. CO stripping exhibited a promising low onset potential and a large current density, especially in the case of the deposited catalyst. Ethanol electroxidation experiments revealed that the Pt-Nb(2)O(5)crystalline/C generated the largest current. However it was not effective to completely oxidize ethanol, leading to acetic acid as the main product. In this sense, the highest efficiency for the complete oxidation of ethanol was obtained for the deposited catalyst. These results were interpreted in terms of the physico-chemical characteristic displayed by the different catalysts. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.040210jes] All rights reserved.