979 resultados para PROTEIN OXIDATION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Las reacciones bioquímicas que ocurren como consecuencia del tratamiento y almacenamiento de los alimentos, mejoran la seguridad alimentaria, las propiedades sensoriales y la vida útil. Sin embargo, el tratamiento térmico, la exposición a la luz y el oxígeno pueden causar daño oxidativo a los lípidos y proteínas. Los procesos oxidativos de matrices complejas tienen características distintivas que no se manifiestan cuando los componentes son sometidos a oxidación individualmente. La hipótesis de trabajo es que la oxidación de proteínas en matrices alimentarias complejas altera la estructura y las propiedades funcionales de las proteínas y, que las modificaciones que se producen varían según las condiciones de procesamiento y de la composición química del alimento. Nuestros estudios intentan demostrar que el estado oxidativo de las proteínas de un alimento es un parámetro importante para la evaluación de las propiedades funcionales, sensoriales y nutricionales de un producto lácteo. El objetivo general del proyecto es el estudio de los procesos de oxidación de matrices alimentarias complejas (la leche, miel) y su relación con distintos procesos y materiales utilizados en la industria. Es decir, nos proponemos estudiar las consecuencias funcionales y biológicas (calidad nutricional, coagulación) de la oxidación proteica en modelos experimentales “in vitro” y en productos comerciales. 1. Estudiar los fenómenos de peroxidación proteica en leche entera y descremada sometida a los distintos procesos tecnológicos de la producción de leche y queso a escala laboratorio. Se realizarán las mismas experiencias con albúmina sérica y con proteínas aisladas de suero de leche para comparar diferencias entre una matriz compleja y una simple. 2. Determinar la relación entre oxidación y composición proteica de la leche, y los cambios en las fracciones proteicas aisladas (caseínas y beta-lactoglobulina). 3. Analizar el impacto de los procesos tecnológicos a nivel de producción primaria (composición proteica y estado de oxidación) en los indicadores de inflamación (contenido de células somáticas y proteína C Reactiva) y de estado redox (capacidad antioxidante de los productos lácteos y nivel de carbonilos de proteinas). 4. Comparar las características de composición química y el estado de oxidación de leche provenientes de las tres regiones (Buenos Aires, Santa Fe y Córdoba) que conforman la cuenca láctea Argentina. Este objetivo se realizará conjuntamente con los integrantes de nuestro grupo de investigación que trabajan en el Laboratorio de Control de Calidad de la Escuela Superior de Lechería. 5. Determinar los metabolitos secundarios de mieles uniflorales propuestos como responsables de la capacidad antioxidante de estas (polifenoles) y como indicadores de su origen botánico. 6. Valorar la capacidad antioxidante total de mieles uniflorales. 7. Validar los métodos analíticos y semicuantitativos utilizados y a utilizar en el presente proyecto teniendo en cuenta lo efectos de matrices típico de los fluidos biológicos y las mezclas. El estudio de las modificaciones oxidativas de matrices complejas es un tema que es importante tanto desde el punto de vista del conocimiento básico como del aplicado. Nosotros creemos que el presente proyecto aportará conocimiento sobre las características de las vías oxidativas de proteínas en matrices complejas y que podrá ser utilizado para diseñar estrategias productivas tendientes a disminuir el deterioro de la calidad de la leche debido a la exposición a energía radiante. Parte de la experiencia ganada por el grupo ha sido ya volcada a subsanar dificultades y problemas de oxidación y deterioro de la calidad de alimentos. Además, se contribuirá a discernir la paradoja que existe en el área sobre las propiedades oxidantes/antioxidantes de los polifenoles y la relación entre estas y el estado oxidativo de un alimento. The biochemical reactions that occur as a result of food treatment and storage, improve food security, sensory properties and shelf life. Heat treatment, exposure to light and oxygen can cause oxidative damage to lipids and proteins. Oxidative processes in complex matrices display distinctive features that do not appear when the components are individually subjected to oxidation. The hypothesis is that protein oxidation in complex food matrices alters the structure and functional properties of proteins and that the modifications vary according to process conditions and food composition. The main goal is to study oxidation of complex food matrices (milk, honey) with different processes and materials used in the industry. The specific aims are: 1. To study protein oxidation in whole milk and skim subject to various technological processes. The same experiences will be done with serum albumin and isolated whey proteins to compare complex and simple matrices. 2. To determine the relationship between oxidation and milk protein composition, and changes in casein and beta-lactoglobulin. 3. Analyze the impact of technological processes at the level of primary production on markers of inflammation and redox (antioxidant capacity and protein carbonyls). 4. Compare characteristics of chemical composition and oxidation state of milk. 5. Determine secondary metabolites of honey responsible for the antioxidant capacity of these. 6. To evaluate the total antioxidant capacity unifloral honey. This project will provide knowledge about characteristics of oxidative pathways of proteins in complex matrices that can be used to design production strategies aimed at reduce the deterioration of milk quality. Also, it would help to discern the paradox that exists on the oxidants/antioxidants properties of polyphenols and the relationship between these and the oxidative status of a food.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of high pressure on the composition of food products have not been evaluated extensively. Since, it is necessary to take in consideration the possible effects in basis to the changes induced in the bio molecules by the application of high pressures. The main effect on protein is the denaturation, because the covalent bonds are not affected; however hydrogen bonding, hydrophobic and intermolecular interactions are modified or destroyed. 1 High pressure can modify the activity of some enzymes. If this is done the proteolysis and lipolysis could be more or less intense and the content of free amino acids and fatty acids will be different. This could be related to the bioavailability of these compounds. Low pressures (100 MPa) have been shown to activate some enzymes (monomeric enzymes). Higher pressures induce loss of the enzyme activity. However some enzymes are very stable (ex. Lipase ~ 600 - 1000 MPa). Lipoxygenase is less stable, and there is little information about the effects on antioxidant enzymes. Other important issue is the influence of high pressure on oxidation susceptibility. This could modify the composition of lipids if the degree of the oxidation would have been higher or lower than in the traditional product. Pressure produces the damage of cell membranes favouring the contact between substrates and enzymes, exposure to oxidation of membrane fatty acids and loos of the efficiency of vitamin E. These effects can also affect to protein oxidation. In this study different compounds were analysed to establish the differences between non-treated and high-pressure treated products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years it has been shown that emotional stress induced by immobilization may change the balance between pro-oxidant and antioxidant factors inducing oxidative damage. On the other hand, contradictory views exist concerning the role of physical activity on redox metabolism. Consequently, the present work was designed to assess the influence of an 8-week moderate swimming training program in emotionally stressed rats. Sixty 1-month-old male albino Wistar rats weighing 125-135 g were used in this experimental study. They were divided into three groups, as Control (lot A; n=20), Stressed (lot B; n=20) and Stressed & Exercised (lot C; n=20). Rats were stressed by placing the animals in a 25 x 7 cm plastic bottle 1 h/day, 5 days a week for 8 weeks. Protein carbonyl content values in liver homogenates were significantly increased in stressed animals (0.58+/-0.02 vs 0.86+/-0.03; p=0.018) which clearly indicated that emotional stress was associated with oxidative stress. Ultrastructural alterations, predominantly mitochondrial swelling and the decrease of cristae number observed by electron microscopy represented direct evidence of membrane injury. The most striking feature of our study was that we also found differences between stressed rats and stressed rats that performed our 8 week training program. Consequently our results highlight the potential benefit of a moderate training program to reduce oxidative damage induced by emotional stress since it attenuated protein oxidation and mitochondrial alterations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Forty-eight measurements of energy expenditure were performed in 15 very low-birth-weight infants during the first 6 wk of life. Their mean birth weight and gestation age was 1223 g and 31 wk respectively. Their mean weight gain was 11.2 g/kg . d (range: -6.6 to +15.9 g/kg . d.). The mean energy expenditure increased from 170 kJ/kg . d (wk 1) to 252 kJ/kg . d (wk 6). There was a significant relationship between weight gain and energy expenditure (r = 0.58, P less than 0.001) and also between the net increase in body weight gain and the net increase in energy expenditure (r = 0.80, P less than 0.001). From the slopes of these regression lines, the metabolic cost of growth was found to be approximately 2.3 kJ/g of weight gain. Carbohydrate oxidation represented 80% of energy expenditure at the second wk and decreased to 65% the 6th wk, whereas lipid oxidation during the same period increased from 14 to 30% and the relative protein oxidation remained unchanged, covering 5-6% of the energy expended.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Today, Alzheimer's disease (AD) is one of the most important age-related neurodegenerative diseases, but its etiology remains still unknown. Since the discovery that the hallmark structures of this disease i.e. the formation of amyloid fibers could be the product of ubiquitin-mediated protein degradation defects, it has become clear that the ubiquitin-proteasome system (UPS), usually essential for protein repair, turnover and degradation, is perturbed in this disease. Different aspects of normal and pathological aging are discussed with respect to protein repair and degradation via the UPS, as well as consequences of a deficit in the UPS in AD. Selective protein oxidation may cause protein damage, or protein mutations may induce a dysfunction of the proteasome. Such events eventually lead to activation of cell death pathways and to an aberrant aggregation or incorporation of ubiquitinated proteins into hallmark structures. Aggresome formation is also observed in other neurodegenerative diseases, suggesting that an activation of similar mechanisms must occur in neurodegeneration as a basic phenomenon. It is essential to discuss therapeutic ways to investigate the UPS dysfunction in the human brain and to identify specific targets to hold or stop cell decay.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protein oxidation and ubiquitination of brain proteins are part of mechanisms that modulate protein function or that inactivate proteins and target misfolded proteins to degradation. In this study, we focused on brain aging and on mechanism involved in neurodegeneration such as events occurring in Alzheimer's disease (AD). The goal was to identify differences in nitrosylated proteins - at cysteine residues, and in the composition of ubiquinated proteins between aging and Alzheimer's samples by using a proteomic approach. A polyclonal anti-S-nitrosyl-cysteine, a mono- and a polyclonal anti-ubiquitin antibody were used for the detection of modified or ubiquitinated proteins in middle-aged and aged human entorhinal autopsy brains tissues of 14 subjects without neurological signs and 8 Alzheimer's patients. Proteins were separated by one- and two-dimensional gel electrophoresis and analyzed by Coomassie blue and immuno-blot staining. We identified that the glial fibrillary acidic and tau proteins are more ubiquitinated in brain tissues of Alzheimer's patients. Furthermore, glial fibrillary proteins were also found in nitrosylated state and further characterized by 2D Western blots and identified. Since reactive astrocytes localized prominently around senile plaques one can speculate that elements of plaques such as beta-amyloid proteins may activate surrounding glial elements and proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was to compare the effects of propranolol administered either by i.v. infusion or by prolonged oral administration (4 days) during the first 3 weeks following burns. The resting metabolic rate (RMR) of 10 non-infected fasting burned patients (TBSA: 28 per cent, range 18-37 per cent) was determined four times consecutively by indirect calorimetry (open circuit hood system) following: (1) i.v. physiological saline; (2) i.v. propranolol infusion (2 micrograms/kg/min following a bolus of 80 micrograms/kg); (3) oral propranolol (40 mg q.i.d. during 4 +/- 1 days); and (4) in control patients. All patients showed large increases in both RMR (144 +/- 2 per cent of reference values) and in urinary catecholamine excretion (three to four times as compared to control values). The infusion of propranolol induced a significant decrease in RMR to 135 +/- 2 per cent and oral propranolol to 129 +/- 3 per cent of reference values. A decrease in lipid oxidation but no change in carbohydrate and protein oxidation were observed during propranolol administration. It is concluded that the decrease in RMR induced by propranolol was not influenced by the route of administration. The magnitude of the decrease in energy expenditure suggests that beta-adrenergic hyperactivity represents only one of the mediators of the hypermetabolic response to burn injury.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Proteins are potential targets for singlet molecular oxygen (¹O2) oxidation. Damages occur only at tryptophan, tyrosine, histidine, methionine, and cysteine residues at physiological pH, generating oxidized compounds such as hydroperoxides. Therefore, it is important to understand the mechanisms by which ¹O2, hydroperoxides and other oxidized products can trigger further damage. The improvement and development of new tools, such as clean sources of ¹O2 and isotopic labeling approaches in association with HPLC/mass spectrometry detection will allow one to elucidate mechanistic features involving ¹O2-mediated protein oxidation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The calcified tissues, comprising bone and cartilage, are metabolically active tissues that bind and release calcium, bicarbonate and other substances according to systemic needs. Understanding the regulation of cellular metabolism in bone and cartilage is an important issue, since a link between the metabolism and diseases of these tissues is clear. An essential element in the function of bone-resorbing osteoclasts, namely regulation of bicarbonate transport, has not yet been thoroughly studied. Another example of an important but at the same time fairly unexplored subject of interest in this field is cartilage degeneration, an important determinant for development of osteoarthritis. The link between this and oxidative metabolism has rarely been studied. In this study, we have investigated the significance of bicarbonate transport in osteoclasts. We found that osteoclasts possess several potential proteins for bicarbonate transport, including carbonic anhydrase IV and XIV, and an electroneutral bicarbonate co-transporter NBCn1. We have also shown that inhibiting the function of these proteins has a significant impact on bone resorption and osteoclast morphology. Furthermore, we have explored oxidative metabolism in chondrocytes and found that carbonic anhydrase III (CA III), a protein linked to the prevention of protein oxidation in muscle cells, is also present in mouse chondrocytes, where its expression correlates with the presence of reactive oxygen species. Thus, our study provides novel information on the regulation of cellular metabolism in calcified tissues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of H2O2 were evaluated in the estuarine worm Laeonereis acuta (Polychaeta, Nereididae) collected at the Patos Lagoon estuary (Southern Brazil) and maintained in the laboratory under controlled salinity (10 psu diluted seawater) and temperature (20°C). The worms were exposed to H2O2 (10 and 50 µM) for 4, 7, and 10 days and the following variables were determined: oxygen consumption, catalase (CAT) and glutathione peroxidase activity in both the supernatant and pellet fractions of whole body homogenates. The concentrations of non-protein sulfhydryl and lipid peroxides (LPO) were also measured. The oxygen consumption response was biphasic, decreasing after 4 days and increasing after 7 and 10 days of exposure to 50 µM H2O2 (P < 0.05). At the same H2O2 concentration, CAT activity was lower (P < 0.05) in the pellet fraction of worms exposed for 10 days compared to control. Non-protein sulfhydryl concentration and glutathione peroxidase activity were not affected by H2O2 exposure. After 10 days, LPO levels were higher (P < 0.05) in worms exposed to 50 µM H2O2 compared to control. The reduction in the antioxidant defense was paralleled by oxidative stress as indicated by higher LPO values (441% compared to control). The reduction of CAT activity in the pellet fraction may be related to protein oxidation. These results, taken together with previous findings, suggest that the worms were not able to cope with this H2O2 concentration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oxidative stress has been associated with normal aging and Alzheimer`s disease (AD). However, little is known about oxidative stress in mild cognitive impairment (MCI) patients who present a high risk for developing AD. The aim of this study was to investigate plasma production of the lipid peroxidation marker, malonaldehyde (MDA) and to determine, in erythrocytes, the enzymatic antioxidant activity of catalase, glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione S-transferase (GST) in 33 individuals with MCI, 29 with mild probable AD and 26 healthy aged subjects. GR/GPx activity ratio was calculated to better assess antioxidant defenses. The relationship between oxidative stress and cognitive performance was also evaluated by the Mini Mental State Examination (MMSE). AD patients showed higher MDA levels than both MCI and healthy elderly subjects. MCI subjects also exhibited higher MDA levels compared to controls. Catalase and GPx activity were similar in MCI and healthy individuals but higher in AD. GR activity was lower in MCI and AD patients than in healthy aged subjects. Additionally, GR/GPx ratio was higher in healthy aged subjects, intermediate in MCI and lower in AD patients. No differences in GST activity were detected among the groups. MMSE was negatively associated with MDA levels (r = -0.31, p = 0.028) and positively correlated with GR/GPx ratio in AD patients (r = 0.68, p < 0.001). MDA levels were also negatively correlated to GR/GPx ratio (r = -0.31, p = 0.029) in the AD group. These results suggest that high lipid peroxidation and decreased antioxidant defenses may be present early in cognitive disorders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we present a study about the influence of the porphyrin metal center and mesa ligands on the biological effects of meso-tetrakis porphyrins. Different from the cationic meso-tetrakis 4-N-methyl pyridinium (Mn(III)TMPyP), the anionic Mn(III) meso-tetrakis (para-sulfonatophenyl) porphyrin (Mn(III)TPPS4) exhibited no protector effect against Fe(citrate)-induced lipid oxidation. Mn(III)TPPS4 did not protect mitochondria against endogenous hydrogen peroxide and only delayed the swelling caused by tert-BuOOH and Ca(2+). Fe(III)TPPS4 exacerbated the effect of the tert-BuOOH, and both porphyrins did not significantly affect Fe(II)citrate-induced swelling. Consistently, Fe(III)TPPS4 predominantly promotes the homolytic cleavage of peroxides and exhibits catalytic efficiency ten-fold higher than Mn(III)TPPS4. For Mn(III)TPPS4, the microenvironment of rat liver mitochondria favors the heterolytic cleavage of peroxides and increases the catalytic efficiency of the manganese porphyrin due to the availability of axial ligands for the metal center and reducing agents such as glutathione (GSH) and proteins necessary for Compound II (oxomanganese IV) recycling to the initial Mn(III) form. The use of thiol reducing agents for the recycling of Mn(III)TPPS4 leads to GSH depletion and protein oxidation and consequent damages in the organelle. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Unlike intermolecular disulfide bonds, other protein cross-links arising from oxidative modifications cannot be reversed and are presumably more toxic to cells because they may accumulate and induce protein aggregation. However, most of these irreversible protein cross-links remain poorly characterized. For instance, the antioxidant enzyme human superoxide dismutase 1 (hSod1) has been reported to undergo non-disulfide covalent dimerization and further oligomerization during its bicarbonate-dependent peroxidase activity. The dimerization was shown to be dependent on the oxidation of the single, solvent-exposed TrP(32) residue of hSod1, but the covalent dimer was not isolated nor was its structure determined. In this work, the hSod1 covalent dimer was isolated, digested with trypsin in H(2)O and H(2)(18)O, and analyzed by UV-Vis spectroscopy and mass spectrometry (MS). The results demonstrate that the covalent dimer consists of two hSod1 subunits cross-linked by a ditryptophan, which contains a bond between C3 and N1 of the respective Trp(32) residues. We further demonstrate that the cross-link cleaves under usual MS/MS conditions leading to apparently unmodified Trp(32), partially hinders proteolysis, and provides a mechanism to explain the formation of hSod1 covalent trimers and tetramers. This characterization of the covalent hSod1 dimer identifies a novel oxidative modification of protein Trp residues and provides clues for studying its occurrence in vivo. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Caloric restriction is the most effective non-genetic intervention to enhance lifespan known to date. A major research interest has been the development of therapeutic strategies capable of promoting the beneficial results of this dietary regimen. In this sense, we propose that compounds that decrease the efficiency of energy conversion, such as mitochondrial uncouplers, can be caloric restriction mimetics. Treatment of mice with low doses of the protonophore 2,4-dinitrophenol promotes enhanced tissue respiratory rates, improved serological glucose, triglyceride and insulin levels, decrease of reactive oxygen species levels and tissue DNA and protein oxidation, as well as reduced body weight. Importantly, 2,4-dinitrophenol-treated animals also presented enhanced longevity. Our results demonstrate that mild mitochondrial uncoupling is a highly effective in vivo antioxidant strategy, and describe the first therapeutic intervention capable of effectively reproducing the physiological, metabolic and lifespan effects of caloric restriction in healthy mammals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)