885 resultados para PROTEIN DEGRADATION


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis examines protein behaviours that occur during cereal fermentations. The focus is on the prolamin degradation in sourdoughs. The thesis also looks at what happens to the oat globulins during an oat bran acidification process. The cereal prolamins are unique proteins in many respects. The wheat prolamins (glutenins and gliadins) are responsible for the formation of the gluten that provides the viscoelastic properties to wheat doughs whereas the rye prolamins (secalins) are unable to develop gluten-like structures. In addition, many baking technological features, such as flavour, shelf-life and dough properties are affected by the protein degradation that might occur during processing. On the other hand, the prolamins contain protein structures that are harmful to gluten sensitive people. It is thus evident that the degradation of the prolamins in sourdough processes may be approached from various aspects. This thesis describes some of these approaches. Four different cereal fermentations were carried out. Wheat sourdough (WSD) and rye sourdough (RSD) fermentations represented traditional sourdoughs. A germinated-wheat sourdough (GWSD) was a novel sourdough type that was prepared using germinated wheat grains that had high and diverse proteolytic activities. The oat bran fermentation (OBF) represented a fermentation system that lacked functional cereal proteases. The high molecular weight glutenins and rye secalins were degraded during the WSD and RSD fermentations, respectively. It was noteworthy that in WSD only a very limited degradation of the gliadins occurred. The gliadins were, however, hydrolysed very extensively during the GWSD fermentation. No protein degradation was observable in the OBF system. Instead the acidification altered the solubility of the oat globulins and this finally led to their aggregation. This thesis confirms that the endogenous proteases of cereals hydrolyse cereal prolamins in sourdoughs. The thesis also shows that the proteolytic activity of the used cereal raw material determines the extent of proteolysis that occurs in sourdough. This means that bakers may adjust the protein degradation in their sourdoughs by selecting the raw material based on its proteolytic activity. The thesis also demonstrates that by using germinated grains, with high and diverse proteolytic activity in sourdough preparations, the prolamins can be extensively degraded. Whether such highly proteolytic food technology could be used to manufacture new gluten-free cereal-based products for gluten sensitive people remains to be solved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Kingston-Smith, A. H., Bollard, A. L., Humphreys, M. O,, Theodorou, M. K. (2002). An assessment of the ability of the stay-green phenotype in Lolium species to provide an improved protein supply for ruminants. Annals of Botany, 89(6), 731-740. Sponsorship: BBSRC/MAFF/Milk Development Council/Meat and Livestock Commission/Industry. RAE2008

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Silicone elastomer systems have previously been shown to offer potential for the sustained release of protein therapeutics. However, the general requirement for the incorporation of large amounts of release enhancing solid excipients to achieve therapeutically effective release rates from these otherwise hydrophobic polymer systems can detrimentally affect the viscosity of the precure silicone elastomer mixture and its curing characteristics. The increase in viscosity necessitates the use of higher operating pressures in manufacture, resulting in higher shear stresses that are often detrimental to the structural integrity of the incorporated protein. The addition of liquid silicones increases the initial tan delta value and the tan delta values in the early stages of curing by increasing the liquid character (G '') of the silicone elastomer system and reducing its elastic character (G'), thereby reducing the shear stress placed on the formulation during manufacture and minimizing the potential for protein degradation. However, SEM analysis has demonstrated that if the liquid character of the silicone elastomer is too high, the formulation will be unable to fill the mold during manufacture. This study demonstrates that incorporation of liquid hydroxy-terminated polydimethylsiloxanes into addition-cure silicone elastomer-covered rod formulations can both effectively lower the viscosity of the precured silicone elastomer and enhance the release rate of the model therapeutic protein bovine serum albumin. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this study was to examine the effect of hyper-osmotic stress on protein turnover in skeletal muscle tissue using an established in-vitro model. Rat EDL muscles were incubated in either hyper-osmotic (400 ± 10 Osm) or isoosmotic (290 ± 10 Osm) custom-modified media (Gibco). L-[14C]-U-phenylalanine (n=8) and cycloheximide (n=8) were used to quantify protein synthesis and degradation, respectively. Western blotting analyses was performed to determine the activation of protein synthesis and degradation pathways. During hyperosmotic stress, protein degradation increased (p<0.05), while protein synthesis was decreased (p<0.05) as compared to the iso-osmotic condition. The decline in protein synthesis was accompanied by a decrease (p<0.05) in p70s6 kinase phosphorylation, while the increase in protein degradation was associated with an increase (p<0.05) in autolyzed calpain. Therefore, hyper-osmotic extracellular stress results in an intracellular catabolic environment in mammalian skeletal muscle tissue.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cellular stress resistance has been shown to be highly correlated with longevity. However, the mechanisms conferring this stress resistance have yet to be identified. Maintenance of protein homeostasis is a critical component of cellular maintenance and stress resistance. Superior protein homeostasis capacities may thus underlie the greater stress resistance observed in longer-lived animals; however, little vertebrate data have been provided supporting this idea. I used two different experimental approaches to test the associations of protein homeostasis capacities with stress resistance and lifespan: 1) a comparison between a large set of vertebrate species with varying body masses and lifespans and 2) a comparison of long-lived Snell dwarf mice and their normal littermates. Protein homeostasis mechanisms including protein degradation activity, protein repair activity and molecular chaperone levels were examined. These measurements were performed in liver, heart and brain tissues, and isolated myoblasts. My results indicated that neither protein degradation nor protein repair were upregulated in association with enhanced stress resistance and longevity in an inter-species and intraspecies context. Furthermore, my results did show that there is a positive correlation between molecular chaperone levels and maximum lifespan (MLSP). However, there was no elevation of chaperone levels in the long-lived Snell dwarf mouse, indicating there are other mechanisms linked to their increased lifespan. Therefore, these results suggest that molecular chaperones are involved in increasing animal lifespan in an interspecies context.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this study was to examine the effects of increased extracellular leucine concentration on protein metabolism in skeletal muscle cells when exposed to 3 different osmotic stresses. L6 skeletal muscle cells were incubated in either a normal or supplemental leucine (1.5mM) medium set to hypo-osmotic (230 ± 10 Osm), iso-osmotic (330 ± 10 Osm) or hyper-osmotic (440 ± 10 Osm) conditions. 3H-tyrosine was used to quantify protein synthesis. Western blotting analysis was performed to determine the activation of mTOR, p70S6k, ubiquitin, actin, and μ-calpain. Hypo-osmotic stress resulted in the greatest increase in protein synthesis rate under the normal-leucine condition while iso-osmotic stress has the greatest increase under the elevated-leucine condition. Elevated-leucine condition had a decreased rate in protein degradation over the normal condition within the ubiquitin proteasome pathway (p<0.05). Leucine and hypo-osmotic stress therefore creates a favourable environment for anabolic events to occur.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purkinje cell degeneration (pcd) mice have a mutation within the gene encoding cytosolic carboxypeptidase 1 (CCP1/Nna1), which has homology to metallocarboxypeptidases. To assess the function of CCP1/Nna1, quantitative proteomics and peptidomics approaches were used to compare proteins and peptides in mutant and wild-type mice. Hundreds of peptides derived from cytosolic and mitochondrial proteins are greatly elevated in pcd mouse hypothalamus, amygdala, cortex, prefrontal cortex, and striatum. However, the major proteins detected on 2-D gel electrophoresis were present in mutant and wild-type mouse cortex and hypothalamus at comparable levels, and proteasome activity is normal in these brain regions of pcd mice, suggesting that the increase in cellular peptide levels in the pcd mice is due to reduced degradation of the peptides downstream of the proteasome. Both nondegenerating and degenerating regions of pcd mouse brain, but not wild-type mouse brain, show elevated autophagy, which can be triggered by a decrease in amino acid levels. Taken together with previous studies on CCP1/Nna1, these data suggest that CCP1/Nna1 plays a role in protein turnover by cleaving proteasome-generated peptides into amino acids and that decreased peptide turnover in the pcd mice leads to cell death.-Berezniuk, I., Sironi, J., Callaway, M. B., Castro, L. M., Hirata, I. Y., Ferro, E. S., Fricker, L. D. CCP1/Nna1 functions in protein turnover in mouse brain: Implications for cell death in Purkinje cell degeneration mice. FASEB J. 24, 1813-1823 (2010). www.fasebj.org

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Few studies dealing with effort intensity during swimming exercise in rats have been reported in the literature. Recently, with the use of the lactate minimum test (LMT), our group estimated the minimum blood lactate (MBL) of rats during swimming exercises. This information allowed accurate evaluation of the effort intensity developed by rats during swimming exercise. The present study was designed to evaluate the effects of swimming exercise sessions in below, equivalent and above intensities to MBL, on protein metabolism of rats. Adult (90 days) sedentary male Wistar rats were used in the present study. Mean values of MBL, in the present study, were obtained at blood concentration of 6.7 +/- 0.4 mmol/L with a load of 5% bw. The animals were sacrificed at rest (R) or immediately after a single swimming session (30 min) supporting loads below (3.5% bw), equivalent (5.0% bw) and high load (6.5% bw) to AT. Blood samples were collected each 5 min of exercise for lactate determination. Soleus muscle protein synthesis (amount of L-[C-14] fenil alanyn incorporation to protein) and breakdown (tyrosin release) rates were evaluated. Blood lactate concentrations (mmol/L) stabilized with the below (5.4 +/- 0.01) and equivalent (6.4 +/- 0.006) to MBL but increased, progressively, with the high load. There were no differences in protein synthesis (pmol/mg.h) among rest values (65.2 +/- 3.4) and after-exercise supporting the loads below (61.5 +/- 1.3) and the equivalent (60.7+/-1.7) to MBL but there was a decrease with the high load (36.6+/-2.0). Protein breakdown rates (pmol/g.h) increase after exercise supporting the loads below (227.0 +/- 6.1), equivalent (227.9 +/- 6.0) and high (363.6 +/- 7.1) to MBL in relation to the rest (214.3 +/- 6.0). The results indicate the viability of the application of LMT in studies with rats since it detected alterations imposed by exercise.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The number and degree of digestion of pollen grains in the midgut and rectum, the midgut proteolytic activity and the time of pollen grain passage through the digestive tract in the stingless bee Scaptotrigona postica (Latreille) have been analyzed. The results show similar protein requirements among larvae, nurse bees and queens, as well as between forager bees and old males, but these requirements are higher in individuals from the former groups than in those from the latter. Although protein requirements have been demonstrated to vary according to a bee's activity in the colony, they are similar among bees from different castes or sexes. These changes in feeding behavior are related to the bee's function and to less competition for nourishment among individuals of the colony. It is also noted that pollen grains took between 6 and 28 h to pass through the digestive tract. Pollen grains are irregularly accumulated in the various regions of the midgut, which may reflect functional differentiation throughout the midgut. © 2001 Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The chickpea seed germination was carried out in 6 days. During the period it was observed a little variation on total nitrogen contents, however the non protein nitrogen was double. A decrease of 19.1 and 20.6% in relation to total nitrogen was observed to the total globulin and albumin fractions, respectively. The gel filtration chromatography on Sepharose CL-6B and SDS-PAGE demonstrated alterations on the distribution patterns of the albumin and total globulin fractions between the initial and the sixth day of germination suggesting the occurrence of protein degradation in the germination process.The assay for acid protease only appeared in the albumin fraction with casein and chickpea total globulin as substrates, whereas the former was more degradated than the latter, however the transformations detected in the protein fractions apppear indicated that others enzymes could be acting during the process. The trypsin inhibitor activity had a little drop after six day of germination indicating a possible increase on the digestibility of the proteins.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The highly conserved eukaryotic translation initiation factor eIF5A has been proposed to have various roles in the cell, from translation to mRNA decay to nuclear protein export. To further our understanding of this essential protein, three temperature-sensitive alleles of the yeast TIF51A gene have been characterized. Two mutant eIF5A proteins contain mutations in a proline residue at the junction between the two eIFSA domains and the third, strongest allele encodes a protein with a single mutation in each domain, both of which are required for the growth defect. The stronger tif51A alleles cause defects in degradation of short-lived mRNAs, supporting a role for this protein in mRNA decay. A multicopy suppressor screen revealed six genes, the overexpression of which allows growth of a tif51A-1 strain at high temperature; these genes include PAB1, PKC1, and PKC1 regulators WSC1, WSC2, and WSC3. Further results suggest that eIFSA may also be involved in ribosomal synthesis and the WSC/PKC1 signaling pathway for cell wall integrity or related processes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Kaposi's sarcoma-associated herpesvirus (KSHV/human herpesvirus 8 [HHV8]) and Epstein-Barr virus (EBV/HHV4) are distantly related gammaherpesviruses causing tumors in humans. KSHV latency-associated nuclear antigen 1 (LANA1) is functionally similar to the EBV nuclear antigen-1 (EBNA1) protein expressed during viral latency, although they have no amino acid similarities. EBNA1 escapes cytotoxic lymphocyte (CTL) antigen processing by inhibiting its own proteosomal degradation and retarding its own synthesis to reduce defective ribosomal product processing. We show here that the LANA1 QED-rich central repeat (CR) region, particularly the CR2CR3 subdomain, also retards LANA1 synthesis and markedly enhances LANA1 stability in vitro and in vivo. LANA1 isoforms have half-lives greater than 24 h, and fusion of the LANA1 CR2CR3 domain to a destabilized heterologous protein markedly decreases protein turnover. Unlike EBNA1, the LANA1 CR2CR3 subdomain retards translation regardless of whether it is fused to the 5′ or 3′ end of a heterologous gene construct. Manipulation of sequence order, orientation, and composition of the CR2 and CR3 subdomains suggests that specific peptide sequences rather than RNA structures are responsible for synthesis retardation. Although mechanistic differences exist between LANA1 and EBNA1, the primary structures of both proteins have evolved to minimize provoking CTL immune responses. Simple strategies to eliminate these viral inhibitory regions may markedly improve vaccine effectiveness by maximizing CTL responses. Copyright © 2007, American Society for Microbiology. All Rights Reserved.