970 resultados para POWER SPECTRUM


Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are two competing models of our universe right now. One is Big Bang with inflation cosmology. The other is the cyclic model with ekpyrotic phase in each cycle. This paper is divided into two main parts according to these two models. In the first part, we quantify the potentially observable effects of a small violation of translational invariance during inflation, as characterized by the presence of a preferred point, line, or plane. We explore the imprint such a violation would leave on the cosmic microwave background anisotropy, and provide explicit formulas for the expected amplitudes $\langle a_{lm}a_{l'm'}^*\rangle$ of the spherical-harmonic coefficients. We then provide a model and study the two-point correlation of a massless scalar (the inflaton) when the stress tensor contains the energy density from an infinitely long straight cosmic string in addition to a cosmological constant. Finally, we discuss if inflation can reconcile with the Liouville's theorem as far as the fine-tuning problem is concerned. In the second part, we find several problems in the cyclic/ekpyrotic cosmology. First of all, quantum to classical transition would not happen during an ekpyrotic phase even for superhorizon modes, and therefore the fluctuations cannot be interpreted as classical. This implies the prediction of scale-free power spectrum in ekpyrotic/cyclic universe model requires more inspection. Secondly, we find that the usual mechanism to solve fine-tuning problems is not compatible with eternal universe which contains infinitely many cycles in both direction of time. Therefore, all fine-tuning problems including the flatness problem still asks for an explanation in any generic cyclic models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The temporal structure of neuronal spike trains in the visual cortex can provide detailed information about the stimulus and about the neuronal implementation of visual processing. Spike trains recorded from the macaque motion area MT in previous studies (Newsome et al., 1989a; Britten et al., 1992; Zohary et al., 1994) are analyzed here in the context of the dynamic random dot stimulus which was used to evoke them. If the stimulus is incoherent, the spike trains can be highly modulated and precisely locked in time to the stimulus. In contrast, the coherent motion stimulus creates little or no temporal modulation and allows us to study patterns in the spike train that may be intrinsic to the cortical circuitry in area MT. Long gaps in the spike train evoked by the preferred direction motion stimulus are found, and they appear to be symmetrical to bursts in the response to the anti-preferred direction of motion. A novel cross-correlation technique is used to establish that the gaps are correlated between pairs of neurons. Temporal modulation is also found in psychophysical experiments using a modified stimulus. A model is made that can account for the temporal modulation in terms of the computational theory of biological image motion processing. A frequency domain analysis of the stimulus reveals that it contains a repeated power spectrum that may account for psychophysical and electrophysiological observations.

Some neurons tend to fire bursts of action potentials while others avoid burst firing. Using numerical and analytical models of spike trains as Poisson processes with the addition of refractory periods and bursting, we are able to account for peaks in the power spectrum near 40 Hz without assuming the existence of an underlying oscillatory signal. A preliminary examination of the local field potential reveals that stimulus-locked oscillation appears briefly at the beginning of the trial.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cosmic birefringence (CB)---a rotation of photon-polarization plane in vacuum---is a generic signature of new scalar fields that could provide dark energy. Previously, WMAP observations excluded a uniform CB-rotation angle larger than a degree.

In this thesis, we develop a minimum-variance--estimator formalism for reconstructing direction-dependent rotation from full-sky CMB maps, and forecast more than an order-of-magnitude improvement in sensitivity with incoming Planck data and future satellite missions. Next, we perform the first analysis of WMAP-7 data to look for rotation-angle anisotropies and report null detection of the rotation-angle power-spectrum multipoles below L=512, constraining quadrupole amplitude of a scale-invariant power to less than one degree. We further explore the use of a cross-correlation between CMB temperature and the rotation for detecting the CB signal, for different quintessence models. We find that it may improve sensitivity in case of marginal detection, and provide an empirical handle for distinguishing details of new physics indicated by CB.

We then consider other parity-violating physics beyond standard models---in particular, a chiral inflationary-gravitational-wave background. We show that WMAP has no constraining power, while a cosmic-variance--limited experiment would be capable of detecting only a large parity violation. In case of a strong detection of EB/TB correlations, CB can be readily distinguished from chiral gravity waves.

We next adopt our CB analysis to investigate patchy screening of the CMB, driven by inhomogeneities during the Epoch of Reionization (EoR). We constrain a toy model of reionization with WMAP-7 data, and show that data from Planck should start approaching interesting portions of the EoR parameter space and can be used to exclude reionization tomographies with large ionized bubbles.

In light of the upcoming data from low-frequency radio observations of the redshifted 21-cm line from the EoR, we examine probability-distribution functions (PDFs) and difference PDFs of the simulated 21-cm brightness temperature, and discuss the information that can be recovered using these statistics. We find that PDFs are insensitive to details of small-scale physics, but highly sensitive to the properties of the ionizing sources and the size of ionized bubbles.

Finally, we discuss prospects for related future investigations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Galaxy clusters are the largest gravitationally bound objects in the observable universe, and they are formed from the largest perturbations of the primordial matter power spectrum. During initial cluster collapse, matter is accelerated to supersonic velocities, and the baryonic component is heated as it passes through accretion shocks. This process stabilizes when the pressure of the bound matter prevents further gravitational collapse. Galaxy clusters are useful cosmological probes, because their formation progressively freezes out at the epoch when dark energy begins to dominate the expansion and energy density of the universe. A diverse set of observables, from radio through X-ray wavelengths, are sourced from galaxy clusters, and this is useful for self-calibration. The distributions of these observables trace a cluster's dark matter halo, which represents more than 80% of the cluster's gravitational potential. One such observable is the Sunyaev-Zel'dovich effect (SZE), which results when the ionized intercluster medium blueshifts the cosmic microwave background via Compton scattering. Great technical advances in the last several decades have made regular observation of the SZE possible. Resolved SZE science, such as is explored in this analysis, has benefitted from the construction of large-format camera arrays consisting of highly sensitive millimeter-wave detectors, such as Bolocam. Bolocam is a submillimeter camera, sensitive to 140 GHz and 268 GHz radiation, located at one of the best observing sites in the world: the Caltech Submillimeter Observatory on Mauna Kea in Hawaii. Bolocam fielded 144 of the original spider web NTD bolometers used in an entire generation of ground-based, balloon-borne, and satellite-borne millimeter wave instrumention. Over approximately six years, our group at Caltech has developed a mature galaxy cluster observational program with Bolocam. This thesis describes the construction of the instrument's full cluster catalog: BOXSZ. Using this catalog, I have scaled the Bolocam SZE measurements with X-ray mass approximations in an effort to characterize the SZE signal as a viable mass probe for cosmology. This work has confirmed the SZE to be a low-scatter tracer of cluster mass. The analysis has also revealed how sensitive the SZE-mass scaling is to small biases in the adopted mass approximation. Future Bolocam analysis efforts are set on resolving these discrepancies by approximating cluster mass jointly with different observational probes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We simulate incompressible, MHD turbulence using a pseudo-spectral code. Our major conclusions are as follows.

1) MHD turbulence is most conveniently described in terms of counter propagating shear Alfvén and slow waves. Shear Alfvén waves control the cascade dynamics. Slow waves play a passive role and adopt the spectrum set by the shear Alfvén waves. Cascades composed entirely of shear Alfvén waves do not generate a significant measure of slow waves.

2) MHD turbulence is anisotropic with energy cascading more rapidly along k than along k, where k and k refer to wavevector components perpendicular and parallel to the local magnetic field. Anisotropy increases with increasing k such that excited modes are confined inside a cone bounded by k ∝ kγ where γ less than 1. The opening angle of the cone, θ(k) ∝ k-(1-γ), defines the scale dependent anisotropy.

3) MHD turbulence is generically strong in the sense that the waves which comprise it suffer order unity distortions on timescales comparable to their periods. Nevertheless, turbulent fluctuations are small deep inside the inertial range. Their energy density is less than that of the background field by a factor θ2 (k)≪1.

4) MHD cascades are best understood geometrically. Wave packets suffer distortions as they move along magnetic field lines perturbed by counter propagating waves. Field lines perturbed by unidirectional waves map planes perpendicular to the local field into each other. Shear Alfvén waves are responsible for the mapping's shear and slow waves for its dilatation. The amplitude of the former exceeds that of the latter by 1/θ(k) which accounts for dominance of the shear Alfvén waves in controlling the cascade dynamics.

5) Passive scalars mixed by MHD turbulence adopt the same power spectrum as the velocity and magnetic field perturbations.

6) Decaying MHD turbulence is unstable to an increase of the imbalance between the flux of waves propagating in opposite directions along the magnetic field. Forced MHD turbulence displays order unity fluctuations with respect to the balanced state if excited at low k by δ(t) correlated forcing. It appears to be statistically stable to the unlimited growth of imbalance.

7) Gradients of the dynamic variables are focused into sheets aligned with the magnetic field whose thickness is comparable to the dissipation scale. Sheets formed by oppositely directed waves are uncorrelated. We suspect that these are vortex sheets which the mean magnetic field prevents from rolling up.

8) Items (1)-(5) lend support to the model of strong MHD turbulence put forth by Goldreich and Sridhar (1995, 1997). Results from our simulations are also consistent with the GS prediction γ = 2/3. The sole not able discrepancy is that the 1D power law spectra, E(k) ∝ k-∝, determined from our simulations exhibit ∝ ≈ 3/2, whereas the GS model predicts ∝ = 5/3.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bulk n-lnSb is investigated at a heterodyne detector for the submillimeter wavelength region. Two modes or operation are investigated: (1) the Rollin or hot electron bolometer mode (zero magnetic field), and (2) the Putley mode (quantizing magnetic field). The highlight of the thesis work is the pioneering demonstration or the Putley mode mixer at several frequencies. For example, a double-sideband system noise temperature of about 510K was obtained using a 812 GHz methanol laser for the local oscillator. This performance is at least a factor or 10 more sensitive than any other performance reported to date at the same frequency. In addition, the Putley mode mixer achieved system noise temperatures of 250K at 492 GHz and 350K at 625 GHz. The 492 GHz performance is about 50% better and the 625 GHz is about 100% better than previous best performances established by the Rollin-mode mixer. To achieve these results, it was necessary to design a totally new ultra-low noise, room-temperature preamp to handle the higher source impedance imposed by the Putley mode operation. This preamp has considerably less input capacitance than comparably noisy, ambient designs.

In addition to advancing receiver technology, this thesis also presents several novel results regarding the physics of n-lnSb at low temperatures. A Fourier transform spectrometer was constructed and used to measure the submillimeter wave absorption coefficient of relatively pure material at liquid helium temperatures and in zero magnetic field. Below 4.2K, the absorption coefficient was found to decrease with frequency much faster than predicted by Drudian theory. Much better agreement with experiment was obtained using a quantum theory based on inverse-Bremmstrahlung in a solid. Also the noise of the Rollin-mode detector at 4.2K was accurately measured and compared with theory. The power spectrum is found to be well fit by a recent theory of non- equilibrium noise due to Mather. Surprisingly, when biased for optimum detector performance, high purity lnSb cooled to liquid helium temperatures generates less noise than that predicted by simple non-equilibrium Johnson noise theory alone. This explains in part the excellent performance of the Rollin-mode detector in the millimeter wavelength region.

Again using the Fourier transform spectrometer, spectra are obtained of the responsivity and direct detection NEP as a function of magnetic field in the range 20-110 cm-1. The results show a discernable peak in the detector response at the conduction electron cyclotron resonance frequency tor magnetic fields as low as 3 KG at bath temperatures of 2.0K. The spectra also display the well-known peak due to the cyclotron resonance of electrons bound to impurity states. The magnitude of responsivity at both peaks is roughly constant with magnet1c field and is comparable to the low frequency Rollin-mode response. The NEP at the peaks is found to be much better than previous values at the same frequency and comparable to the best long wavelength results previously reported. For example, a value NEP=4.5x10-13/Hz1/2 is measured at 4.2K, 6 KG and 40 cm-1. Study of the responsivity under conditions of impact ionization showed a dramatic disappearance of the impurity electron resonance while the conduction electron resonance remained constant. This observation offers the first concrete evidence that the mobility of an electron in the N=0 and N=1 Landau levels is different. Finally, these direct detection experiments indicate that the excellent heterodyne performance achieved at 812 GHz should be attainable up to frequencies of at least 1200 GHz.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interference patterns produced by Gaussian-shaped broad-bandwidth femtosecond pulsed laser sources are derived. The interference pattern contains both spatial and temporal properties of laser beam. Interference intensity dependent on the bandwidth of femtosecond laser are given. We demonstrate experimentally both the spatial and the temporal coherence properties of a Ti:sapphire femtosecond pulse laser, as well as its power spectrum by using a pinhole pair.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A theoretical study of the behaviour of partially coherent beams propagating through oceanic turbulence has been performed. Based on the previously developed knowledge of beam spreading of a partially coherent beam in the atmosphere and the spatial power spectrum of the refractive index of ocean water, we study the normalized root-mean-square width of a partially coherent beam on propagation through oceanic turbulence and its turbulence distance which may be a measure of turbulence resistance. Our analysis indicates that the behaviour of partially coherent beams on propagation may be described by the rate of dissipation of the mean-squared temperature chi(T) and that of salinity chi(S). In terms of a quantity w that defines the contributions of the temperature and salinity distributions to the distribution of the refractive index, chi(S) could be written as a function of chi(T) and w. Therefore, the behaviour of partially coherent beams on propagation can be characterized only by chi(T) for a given w. The results are shown for curved surfaces, from which one can see that partially coherent beams exhibit robust turbulence resistance when the water volume has a smaller chi(T).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The propagation of waves in an extended, irregular medium is studied under the "quasi-optics" and the "Markov random process" approximations. Under these assumptions, a Fokker-Planck equation satisfied by the characteristic functional of the random wave field is derived. A complete set of the moment equations with different transverse coordinates and different wavenumbers is then obtained from the characteristic functional. The derivation does not require Gaussian statistics of the random medium and the result can be applied to the time-dependent problem. We then solve the moment equations for the phase correlation function, angular broadening, temporal pulse smearing, intensity correlation function, and the probability distribution of the random waves. The necessary and sufficient conditions for strong scintillation are also given.

We also consider the problem of diffraction of waves by a random, phase-changing screen. The intensity correlation function is solved in the whole Fresnel diffraction region and the temporal pulse broadening function is derived rigorously from the wave equation.

The method of smooth perturbations is applied to interplanetary scintillations. We formulate and calculate the effects of the solar-wind velocity fluctuations on the observed intensity power spectrum and on the ratio of the observed "pattern" velocity and the true velocity of the solar wind in the three-dimensional spherical model. The r.m.s. solar-wind velocity fluctuations are found to be ~200 km/sec in the region about 20 solar radii from the Sun.

We then interpret the observed interstellar scintillation data using the theories derived under the Markov approximation, which are also valid for the strong scintillation. We find that the Kolmogorov power-law spectrum with an outer scale of 10 to 100 pc fits the scintillation data and that the ambient averaged electron density in the interstellar medium is about 0.025 cm-3. It is also found that there exists a region of strong electron density fluctuation with thickness ~10 pc and mean electron density ~7 cm-3 between the PSR 0833-45 pulsar and the earth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The experimental portion of this thesis tries to estimate the density of the power spectrum of very low frequency semiconductor noise, from 10-6.3 cps to 1. cps with a greater accuracy than that achieved in previous similar attempts: it is concluded that the spectrum is 1/fα with α approximately 1.3 over most of the frequency range, but appearing to have a value of about 1 in the lowest decade. The noise sources are, among others, the first stage circuits of a grounded input silicon epitaxial operational amplifier. This thesis also investigates a peculiar form of stationarity which seems to distinguish flicker noise from other semiconductor noise.

In order to decrease by an order of magnitude the pernicious effects of temperature drifts, semiconductor "aging", and possible mechanical failures associated with prolonged periods of data taking, 10 independent noise sources were time-multiplexed and their spectral estimates were subsequently averaged. If the sources have similar spectra, it is demonstrated that this reduces the necessary data-taking time by a factor of 10 for a given accuracy.

In view of the measured high temperature sensitivity of the noise sources, it was necessary to combine the passive attenuation of a special-material container with active control. The noise sources were placed in a copper-epoxy container of high heat capacity and medium heat conductivity, and that container was immersed in a temperature controlled circulating ethylene-glycol bath.

Other spectra of interest, estimated from data taken concurrently with the semiconductor noise data were the spectra of the bath's controlled temperature, the semiconductor surface temperature, and the power supply voltage amplitude fluctuations. A brief description of the equipment constructed to obtain the aforementioned data is included.

The analytical portion of this work is concerned with the following questions: what is the best final spectral density estimate given 10 statistically independent ones of varying quality and magnitude? How can the Blackman and Tukey algorithm which is used for spectral estimation in this work be improved upon? How can non-equidistant sampling reduce data processing cost? Should one try to remove common trands shared by supposedly statistically independent noise sources and, if so, what are the mathematical difficulties involved? What is a physically plausible mathematical model that can account for flicker noise and what are the mathematical implications on its statistical properties? Finally, the variance of the spectral estimate obtained through the Blackman/Tukey algorithm is analyzed in greater detail; the variance is shown to diverge for α ≥ 1 in an assumed power spectrum of k/|f|α, unless the assumed spectrum is "truncated".

Relevância:

60.00% 60.00%

Publicador:

Resumo:

为满足激光惯性约束聚变中靶面激光辐照不均匀性低于5%的要求, 在目前使用透镜列阵基础上, 提出了谱色散平滑与透镜列阵联用方案, 对其进行数值计算并分析其平滑效果和应用可行性。结果表明:焦斑的不均匀性从单独使用透镜列阵时的14%降低到与谱色散平滑结合后的3%;对焦斑点功率谱的分析表明谱色散平滑通过抑制焦斑中高频的频谱强度达到平滑效果。该方案可以进一步提高焦斑平滑效果, 计算结果对实际应用有着重要的参考意义。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Em modelos inflacionários não-isentrópicos, a contribuição para o espectro de potência é essencialmente proveniente das flutuações térmicas. Esta é a situação oposta a da inflação fria, onde as flutuações de origem quântica fornecem toda contribuição para o espectro. Pouca ou nenhuma importância tem sido dada ao regime intermediário, onde as flutuações quânticas e térmicas são comparáveis. Neste trabalho, tendo como bases a inflação não-isentrópica e a inflação estocástica de Starobinsky, propomos um quadro geral onde é possível tratar de maneira conjunta, explícita e transparente tanto a contribuição de origem quântica quanto a de origem térmica para o espectro de potência do inflaton.O espectro de potência geral obtido reproduz, nos limites apropriados, todos os resultados caracteríssticos tanto da inflação fria, quanto da inflação não-isentrópica. Com o objetivo de checar a consistência e a viabilidade do modelo, foram usados os típicos potenciais polinomiais característicos da inflação caótica. Apesar destes potenciais já estarem praticamente descartados pelas observações no contexto da inflação fria, surpreendentemente pudemos constatar que efeitos dissipativos e de temperatura são capazes de restaurar a compatibilidade dos mesmos com os parâmetros cosmológicos inferidos através dos dados do nono ano do WMAP. Através da inserção de tais efeitos na dinâmica de grandes escalas do inflaton, estendemos ainda alguns resultados relacionados ao cenário conhecido como inflação eterna.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years there has been a growing interest amongst the speech research community into the use of spectral estimators which circumvent the traditional quasi-stationary assumption and provide greater time-frequency (t-f) resolution than conventional spectral estimators, such as the short time Fourier power spectrum (STFPS). One distribution in particular, the Wigner distribution (WD), has attracted considerable interest. However, experimental studies have indicated that, despite its improved t-f resolution, employing the WD as the front end of speech recognition system actually reduces recognition performance; only by explicitly re-introducing t-f smoothing into the WD are recognition rates improved. In this paper we provide an explanation for these findings. By treating the spectral estimation problem as one of optimization of a bias variance trade off, we show why additional t-f smoothing improves recognition rates, despite reducing the t-f resolution of the spectral estimator. A practical adaptive smoothing algorithm is presented, whicy attempts to match the degree of smoothing introduced into the WD with the time varying quasi-stationary regions within the speech waveform. The recognition performance of the resulting adaptively smoothed estimator is found to be comparable to that of conventional filterbank estimators, yet the average temporal sampling rate of the resulting spectral vectors is reduced by around a factor of 10. © 1992.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new interpolation technique has been developed for replacing missing samples in a sampled waveform drawn from a stationary stochastic process, given the power spectrum for the process. The method works with a finite block of data and is based on the assumption that components of the block DFT are Gaussian zero-mean independent random variables with variance proportional to the power spectrum at each frequency value. These assumptions make the interpolator particularly suitable for signals with a sharply-defined harmonic structure, such as audio waveforms recorded from music or voiced speech. Some results are presented and comparisons are made with existing techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Long-term potentiation (LTP) and long-term depression (LTD) of the excitatory synaptic inputs plasticity in the hippocampus is believed to underlie certain types of learning and memory. Especially, stressful experiences, well known to produce long-lasting strong memories of the event themselves, enable LTD by low frequency stimulation (LFS, 3 Hz) but block LTP induction by high frequency stimulation (HFS, 200 Hz). However, it is unknown whether stress-affected synaptic plasticity has an impact on the output plasticity. Thus, we have simultaneously studied the effects of stress on synaptic plasticity and neuronal output in the hippocampal CA1 region of anesthetized Wistar rats. Our results revealed that stress increased basal power spectrum of the evoked synchronized-spikes and enabled LTD induction by LFS. The induction of stress-facilitated LTD but not LFS induced persistent decreases of the power spectrum of the synchronized-spikes and the frequency of the spontaneous unitary discharges; However, HFS induced UP in non-stressed animals and increased the power spectrum of the synchronized-spikes, without affecting the frequency of the spontaneous unitary discharges, but HFS failed to induce UP in stressed animals without affecting the power spectrum of the synchronized-spikes and the frequency of the spontaneous unitary discharges. These observations that stress-facilitated LTD induces the output plasticity through the synchronized-spikes and spontaneous unitary discharges suggest that these types of stress-related plasticity may play significant roles in distribution, amplification and integration of encoded information to other brain structures under stressful conditions. (C) 2004 Elsevier Ireland Ltd and The Japan Neuroscience Society. All rights reserved.