254 resultados para PORPHYROMONAS-GINGIVALIS
Resumo:
Porphyromonas gingivalis, a gram-negative anaerobe which is implicated in the etiology of active periodontitis, secretes degradative enzymes (gingipains) and sheds proinflammatory mediators (e.g., lipopolysaccharides [LPS]). LPS triggers the secretion of interleukin-8 (IL-8) from immune (72-amino-acid [aa] variant [IL-8(72aa)]) and nonimmune (IL-8(77aa)) cells. IL-8(77aa) has low chemotactic and respiratory burst-inducing activity but is susceptible to cleavage by gingipains. This study shows that both R- and K-gingipain treatments of IL-8(77aa) significantly enhance burst activation by fMLP and chemotactic activity (P < 0.05) but decrease burst activation and chemotactic activity of IL-8(72aa) toward neutrophil-like HL60 cells and primary neutrophils (P < 0.05). Using tandem mass spectrometry, we have demonstrated that R-gingipain cleaves 5- and 11-aa peptides from the N-terminal portion of IL-8(77aa) and the resultant peptides are biologically active, while K-gingipain removes an 8-aa N-terminal peptide yielding a 69-aa isoform of IL-8 that shows enhanced biological activity. During periodontitis, secreted gingipains may differentially affect neutrophil chemotaxis and activation in response to IL-8 according to the cellular source of the chemokine.
Resumo:
Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz
Resumo:
Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz
Resumo:
Introduction: Porphyromonas gingivalis is associated with periodontitis and exhibit a wide array of virulence factors, including fimbriae which is encoded by the FimA gene representing six known genotypes. Objetive: To identify FimA genotypes of P. gingivalis in subjects from Cali-Colombia, including the co-infection with Aggregatibacter actinomycetemcomitans , Treponema denticola , and Tannerella forsythia . Methods: Subgingival samples were collected from 151 people exhibiting diverse periodontal condition. The occurrence of P. gingivalis, FimA genotypes and other bacteria was determined by PCR. Results: Porphyromonas gingivalis was positive in 85 patients. Genotype FimA II was more prevalent without reach significant differences among study groups (54.3%), FimA IV was also prevalent in gingivitis (13.0%). A high correlation (p= 0.000) was found among P. gingivalis, T. denticola, and T. forsythia co-infection. The FimA II genotype correlated with concomitant detection of T. denticola and T. forsythia. Conclusions: Porphyromonas gingivalis was high even in the healthy group at the study population. A trend toward a greater frequency of FimA II genotype in patients with moderate and severe periodontitis was determined. The FimA II genotype was also associated with increased pocket depth, greater loss of attachment level, and patients co-infected with T. denticola and T. forsythia.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Neuraminidase was produced by 32.1% and 28.5% of Porphyromonas from dogs with and without periodontitis, respectively; and by 31.8% of bacteria from humans. The presence of neuraminidase in Porphyromonas spp. suggests that this enzyme can be involved with the pathogenesis of the periodontal disease, and the use of this assay to detect the neuraminidase production in oral Porphyromonas species is suggested.
Resumo:
Nitric oxide is known to be an important inflammatory mediator, and is implicated in the pathophysiology of a range of inflammatory disorders. The aim of this study was to determine the localization and distribution of endothelial NOS (NOS-II) in human gingival tissue, and to ascertain if human gingival fibroblasts express NOS-II when stimulated with interferon gamma (IFN-gamma) and bacterial lipopolysaccharide (LPS). The distribution of NOS-II in inflamed and non-inflamed specimens of human gingivae was studied using a monoclonal antibody against nitric oxide synthase II. Cultures of fibroblasts derived from healthy human gingivae were used for the cell culture experiments. The results from immunohistochemical staining of the tissues indicated an upregulation of NOS-II expression in inflamed compared to non-inflamed gingival tissue. Fibroblasts and inflammatory cells within the inflamed connective tissue were positively stained for NOS-II. In addition, basal keratinocytes also stained strongly for NOS-II, in both healthy and inflamed tissue sections. When cultured human gingival fibroblasts were stimulated by INF-gamma and Porphyromonas gingivalis LPS, NOS-II was more strongly expressed than when the cells were exposed to LPS or IFN-gamma alone. These data suggest that, as for other inflammatory diseases, NO plays a role in the pathophysiology of periodontitis.
Resumo:
Both tissue plasminogen activator (t-PA) and plasminogen activator inhibitor 2 (PAI-2) are important proteolysis factors present in inflamed human periodontal tissues. The aim of the present study was to investigate the effect of lipopolysaccharide (LPS) on the synthesis of t-PA and PAI-2 by human gingival fibroblasts (HGF). LPS from different periodontal pathogens including Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum were extracted by the hot phenol water method. The levels of t-PA and PAI-2 secreted into the cell culture media were measured by enzyme-linked immunosorbent assays (ELISA). The mRNA for t-PA and PAI-2 were measured by RT-PCR. The results showed t-PA synthesis was increased in response to all types of LPS studied and PAI-2 level was increased by LPS from A. actinomycetemcomitans and F. nucleatum, but not P. gingivalis. When comparing the effects of LPS from non-periodontal bacteria (Escherichia coli and Salmonella enteritidis) with the LPS from periodontal pathogens, we found that the ratio of t-PA to PAI-2 was greater following exposure of the cells to LPS from periodontal pathogens. The highest ratio of t-PA to PAI-2 was found in those cells exposed to LPS from P. gingivalis. These results indicate that LPS derived from periodontal pathogens may cause unbalanced regulation of plasminogen activator and plasminogen activator inhibitor by HGF and such an effect may, in part, contribute to the destruction of periodontal connective tissue through dysregulated pericellular proteolysis.
Resumo:
Yogurt consumption has been related to longevity of some populations living on the Balkans. Yogurt starter L. delbrueckii subsp. bulgaricus and Str. thermophilus have been recognized as probiotics with verified beneficial health effects. The oral cavity emerges as a arget for probiotic applications. Probiotics have demonstrated promising results in controlling dental diseases and oral yeast infections. However, L. bulgaricus despite its broad availability in dairy products has not been evaluated for probiotic activity in the mouth. These series of studies investigated in vitro properties of L. bulgaricus to outline its potential as an oral probiotic. Prerequisite probiotic properties in the mouth are resistance to oral defense mechanisms, adherence to saliva-coated surfaces, and inhibition of oral pathogens. L. bulgaricus strains showed a strain-dependent inhibition of oral streptococci and Aggregatibacter actinomycetemcomitans, whereas none of the dairy starter strains could affect growth of Porphyromonas gingivalis and Fusobacterium nucleatum. Adhesion is a factor contributing to colonization of the species at the target site. Radiolabeled L. bulgaricus strains and L. rhamnosus GG were tested for their ability to adhere to saliva-coated surfaces. The effects of lysozyme on adhesion and adhesion of Streptococcus sanguinis after lactobacilli pretreatment were also assessed. Adhesion of L. bulgaricus remained lower in comparison to L. rhamnosus GG. One L. bulgaricus strain showed binding frequency comparable to S. sanguinis. Lysozyme pretreatment significantly increased Lactobacillus adhesion. Low gelatinolytic activity was observed for all strains and no conversion of proMMP-9 to its active form was induced by L. bulgaricus. Safety assessment ruled out deleterious effects of L. bulgaricus on extracellular matrix structures. Cytokine response of oral epithelial cells was assessed by measuring IL-8 and TNF-α in cell culture supernatants. The effect of P. gingivalis on cytokine secretion after lactobacilli pretreatment was also assessed. A strain- and time-dependent induction of IL-8 was observed with live bacteria inducing the highest levels of cytokine secretion. Levels of TNF-α were low and only one of ten L. bulgaricus strains stimulated TNF-α secretion similar to positive control. The addition of P. gingivalis produced immediate reduction of cytokine levels within the first hours of incubation irrespective of lactobacilli strains co-cultured with epithelial cells. According to these studies strains among the L. delbrueckii subsp. bulgaricus species may have beneficial probiotic properties in the mouth. Their potential in prevention and management of common oral infectious diseases needs to be further studied.
Resumo:
The main targets of human immunodeficiency virus (HIV) are CD4 receptors of CD4+ lymphocytes and many other cells such as monocytes/macrophages, megakaryocytes, peripheral blood dendritic cells, follicular dendritic cells (DC), epidermal Langerhans cells, and astrocytes. Infection and killing of CD4+ lymphocytes or false reaction of the body to HIV infection and the spontaneous apoptosis of CD4+ lymphocytes decrease CD4+ lymphocyte counts leading to immunosuppression, further disease progression, and appearance of opportunistic infections and malignancies. Oral manifestations are considered to be among the first signs of HIV infection. Enhanced degradation of extracellular matrix and basement membrane components in oral diseases including periodontitis is caused by Zn-dependent enzymes called matrix metalloproteinases (MMPs). The levels and degrees of activation of MMP-1, -2, -3, -7, -8, -9, -25, -26, tissue inhibitors of MMPs (TIMP)-1 and -2, and myeloperoxidase (MPO) and collagenolytic/gelatinolytic activities, and also Ig A, -G, and -M, total protein, and albumin levels in a two-year follow-up were studied from salivary samples. The expression of MMP-7, -8, -9, -25, and -26 immunoreactivities in gingival tissue specimens were studied. Healthy HIV-negative subjects served as controls. All studied clinical periodontal parameters and microbiological evaluation of the periodontopathogens showed that periodontal health of the HIV-positive patients was moderately decreased in comparison to the healthy controls. The levels of Candida in the periodontal pockets and salivary MPO increased with the severity of HIV infection. Immunoreactivities and levels of MMPs and TIMPs, and MMP activities (collagenase, gelatinase) were enhanced in the HIV-positive patient salivary samples relative to the healthy controls regardless of the phase of HIV infection. However, these parameters did not reflect periodontal status in a similar way as in the generally healthy periodontitis patients. Salivary total protein, albumin, IgA, -G, and -M levels were significantly higher in all phases of HIV infection compared to the controls, and salivary total protein, IgG and IgM levels remained higher after two years follow-up, partly correlating with the disease progression and which may reflect the leakage of serum components into the mouth and thus a decreased mucosal barrier. Salivary analyses of MMPs and TIMPs with immunohistochemical analyses showed that HIV infection could predispose to periodontal destruction when compared with healthy controls or the body s defence reactions associated with HIV infection may have been reflected or mediated by MMPs.
Resumo:
Tissue destruction associated with the periodontal disease progression is caused by a cascade of host and microbial factors and proteolytic enzymes. Aberrant laminin-332 (Ln-332), human beta defensin (hBD), and matrix metalloproteinase (MMP) functions have been found in oral inflammatory diseases. The null-allele mouse model appears as the next step in oral disease research. The MMP-8 knock-out mouse model allowed us to clarify the involvement of MMP-8 in vivo in oral and related inflammatory diseases where MMP-8 is suggested to play a key role in tissue destruction. The cleaved Ln-332 γ2-chain species has been implicated in the apical migration of sulcular epithelial cells during the formation of periodontal pockets. We demonstrated that increased Ln-332 fragment levels in gingival crevicular fluid (GCF) are strongly associated with the severity of inflammation in periodontitis. Porphyromonas gingivalis trypsin-like proteinase can cleave an intact Ln-332 γ2-chain into smaller fragments and eventually promote the formation of periodontal pockets. hBDs are components of an innate mucosal defense against pathogenic microbes. Our results suggest that P. gingivalis trypsin-like proteinase can degrade hBD and thus reduce the innate immune response. Elevated levels and the increased activity of MMPs have been detected in several pathological tissue-destructive conditions where MMPs are shown to cleave extracellular matrix (ECM) and basement membrane (BM) molecules and to facilitate tissue destruction. Elevated levels of MMP-8 have been reported in many inflammatory diseases. In periodontitis, MMP-8 levels in gingival crevicular fluid (GCF) and in peri-implant sulcular fluid (PISF) are elevated at sites of active inflammation, and the increased levels of MMP-8 are mainly responsible for collagenase activity, which leads to tissue destruction. MMP-25, expressed by neutrophils, is involved in inflammatory diseases and in ECM turnover. MMP-26 can degrade ECM components and serve as an activator of other MMP enzymes. We further confirmed that increased levels and activation of MMP-8, -25, and -26 in GCF, PISF, and inflamed gingival tissue are associated with the severity of periodontal/peri-implant inflammation. We evaluated the role of MMP-8 in P. gingivalis-induced periodontitis by comparing MMP-8 knock-out (MMP8-/-) and wild-type mice. Surprisingly, MMP-8 significantly attenuated P. gingivalis-induced site-specific alveolar bone loss. We also evaluated systemic changes in serum immunoglobulin and lipoprotein profiles among these mouse groups. P. gingivalis infection increased HDL/VLDL particle size in the MMP-8-/- mice, which is an indicator of lipoprotein responses during systemic inflammation. Serum total LPS and IgG antibody levels were enhanced in both mice groups. P. gingivalis-induced periodontitis, especially in MMP-8-/- mice, is associated with severe alveolar bone loss and with systemic inflammatory and lipoprotein changes that are likely to be involved in early atherosclerosis.