986 resultados para PORE PROPERTIES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relation between the properties and the water content of an undisturbed loess were investigated to provide insight into the mechanical behavior of the natural soil. Hand-carved samples from a single deposit, at their natural water contents, and at water contents modified in the laboratory to provide a range from 870 to 3270, were subjected to unconsolidated-undrained triaxial compression tests, consolidation tests, and initial negative pore water pressure tests. In addition, the clay-size fraction was separated from the remainder of the loess for a separate series of tests to establish its properties. The natural water content of the deposit in the field was measured at regular intervals for one year to provide an example of the range in properties that would be encountered. at this site. The test results are presented and their interpretation leads to conclusions regarding the volumetric relations that exist as the water content varies. The significance of the water content in relation to the properties of the natural soil is explored and the concept of a critical water content for loess is introduced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a wide range of evidence to suggest that permeability can be constrained through of induced polarization measurements. For clean sands and sandstones, current mechanistic models of induced polarization predict a relationship between the low-frequency time constant inferred from induced polarization measurements and the grain diameter. A number of observations do, however, disagree with this and indicate that the observed relaxation behavior is rather governed by the so-called dynamic pore radius L. To test this hypothesis, we have developed a set of new scaling relationships, which allow the relaxation time to be computed from the pore size and the permeability to be computed from both the Cole-Cole time constant and the formation factor. Moreover, these new scaling relationships can be also used to predict the dependence of the Cole-Cole time constant as a function of the water saturation under unsaturated conditions. Comparative tests of the proposed new relationships with regard to various published experimental results for saturated clean sands and sandstones as well as for partially saturated clean sandstones, do indeed confirm that the dynamic pore radius L is a much more reliable indicator of the observed relaxation behavior than grain-size-based models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fusion pore opening and expansion are considered the most energy-demanding steps in viral fusion. Whether this also applies to soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor (SNARE)- and Rab-dependent fusion events has been unknown. We have addressed the problem by characterizing the effects of lysophosphatidylcholine (LPC) and other late-stage inhibitors on lipid mixing and pore opening during vacuole fusion. LPC inhibits fusion by inducing positive curvature in the bilayer and changing its biophysical properties. The LPC block reversibly prevented formation of the hemifusion intermediate that allows lipid, but not content, mixing. Transition from hemifusion to pore opening was sensitive to guanosine-5'-(gamma-thio)triphosphate. It required the vacuolar adenosine triphosphatase V0 sector and coincided with its transformation. Pore opening was rate limiting for the reaction. As with viral fusion, opening the fusion pore may be the most energy-demanding step for intracellular, SNARE-dependent fusion reactions, suggesting that fundamental aspects of lipid mixing and pore opening are related for both systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the influence of pore space characteristics on the hydraulic conductivity and spectral induced polarization (SIP) response is critical for establishing relationships between the electrical and hydrological properties of surficial unconsolidated sedimentary deposits, which host the bulk of the world's readily accessible groundwater resources. Here, we present the results of laboratory SIP measurements on industrial-grade, saturated quartz samples with granulometric characteristics ranging from fine sand to fine gravel, which can be regarded as proxies for widespread alluvial deposits. We altered the pore space characteristics by changing (i) the grain size spectra, (ii) the degree of compaction, and (iii) the level of sorting. We then examined how these changes affect the SIP response, the hydraulic conductivity, and the specific surface area of the considered samples. In general, the results indicate a clear connection between the SIP response and the granulometric as well as pore space characteristics. In particular, we observe a systematic correlation between the hydraulic conductivity and the relaxation time of the Cole-Cole model describing the observed SIP effect for the entire range of considered grain sizes. The results do, however, also indicate that the detailed nature of these relations depends strongly on variations in the pore space characteristics, such as, for example, the degree of compaction. The results of this study underline the complexity of the origin of the SIP signal as well as the difficulty to relate it to a single structural factor of a studied sample, and hence raise some fundamental questions with regard to the practical use of SIP measurements as site- and/or sample-independent predictors of the hydraulic conductivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the influence of pore space characteristics on the hydraulic conductivity and spectral induced polarization (SIP) response is critical for establishing relationships between the electrical and hydrological properties of surficial sedimentary deposits. Here, we present the results of laboratory SIP measurements on saturated quartz samples with granulometric characteristics ranging from fine sand to fine gravel. We alter the pore characteristics using three principal methods: (i) variation of the grain sizes, (ii) changing the degree of compaction, and (iii) changing the level of sorting. We then examine how these changes affect both the SIP response and the hydraulic conductivity. In general, the results indicate a clear connection between the applied changes in pore characteristics and the SIP response. In particular, we observe a systematic correlation between the hydraulic conductivity and the relaxation time of the Cole-Cole model describing the observed SIP effect for the whole range of considered grain sizes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les problèmes d'écoulements multiphasiques en média poreux sont d'un grand intérêt pour de nombreuses applications scientifiques et techniques ; comme la séquestration de C02, l'extraction de pétrole et la dépollution des aquifères. La complexité intrinsèque des systèmes multiphasiques et l'hétérogénéité des formations géologiques sur des échelles multiples représentent un challenge majeur pour comprendre et modéliser les déplacements immiscibles dans les milieux poreux. Les descriptions à l'échelle supérieure basées sur la généralisation de l'équation de Darcy sont largement utilisées, mais ces méthodes sont sujettes à limitations pour les écoulements présentant de l'hystérèse. Les avancées récentes en terme de performances computationnelles et le développement de méthodes précises pour caractériser l'espace interstitiel ainsi que la distribution des phases ont favorisé l'utilisation de modèles qui permettent une résolution fine à l'échelle du pore. Ces modèles offrent un aperçu des caractéristiques de l'écoulement qui ne peuvent pas être facilement observées en laboratoire et peuvent être utilisé pour expliquer la différence entre les processus physiques et les modèles à l'échelle macroscopique existants. L'objet premier de la thèse se porte sur la simulation numérique directe : les équations de Navier-Stokes sont résolues dans l'espace interstitiel et la méthode du volume de fluide (VOF) est employée pour suivre l'évolution de l'interface. Dans VOF, la distribution des phases est décrite par une fonction fluide pour l'ensemble du domaine et des conditions aux bords particulières permettent la prise en compte des propriétés de mouillage du milieu poreux. Dans la première partie de la thèse, nous simulons le drainage dans une cellule Hele-Shaw 2D avec des obstacles cylindriques. Nous montrons que l'approche proposée est applicable même pour des ratios de densité et de viscosité très importants et permet de modéliser la transition entre déplacement stable et digitation visqueuse. Nous intéressons ensuite à l'interprétation de la pression capillaire à l'échelle macroscopique. Nous montrons que les techniques basées sur la moyenne spatiale de la pression présentent plusieurs limitations et sont imprécises en présence d'effets visqueux et de piégeage. Au contraire, une définition basée sur l'énergie permet de séparer les contributions capillaires des effets visqueux. La seconde partie de la thèse est consacrée à l'investigation des effets d'inertie associés aux reconfigurations irréversibles du ménisque causé par l'interface des instabilités. Comme prototype pour ces phénomènes, nous étudions d'abord la dynamique d'un ménisque dans un pore angulaire. Nous montrons que, dans un réseau de pores cubiques, les sauts et reconfigurations sont si fréquents que les effets d'inertie mènent à différentes configurations des fluides. A cause de la non-linéarité du problème, la distribution des fluides influence le travail des forces de pression, qui, à son tour, provoque une chute de pression dans la loi de Darcy. Cela suggère que ces phénomènes devraient être pris en compte lorsque que l'on décrit l'écoulement multiphasique en média poreux à l'échelle macroscopique. La dernière partie de la thèse s'attache à démontrer la validité de notre approche par une comparaison avec des expériences en laboratoire : un drainage instable dans un milieu poreux quasi 2D (une cellule Hele-Shaw avec des obstacles cylindriques). Plusieurs simulations sont tournées sous différentes conditions aux bords et en utilisant différents modèles (modèle intégré 2D et modèle 3D) afin de comparer certaines quantités macroscopiques avec les observations au laboratoire correspondantes. Malgré le challenge de modéliser des déplacements instables, où, par définition, de petites perturbations peuvent grandir sans fin, notre approche numérique apporte de résultats satisfaisants pour tous les cas étudiés. - Problems involving multiphase flow in porous media are of great interest in many scientific and engineering applications including Carbon Capture and Storage, oil recovery and groundwater remediation. The intrinsic complexity of multiphase systems and the multi scale heterogeneity of geological formations represent the major challenges to understand and model immiscible displacement in porous media. Upscaled descriptions based on generalization of Darcy's law are widely used, but they are subject to several limitations for flow that exhibit hysteric and history- dependent behaviors. Recent advances in high performance computing and the development of accurate methods to characterize pore space and phase distribution have fostered the use of models that allow sub-pore resolution. These models provide an insight on flow characteristics that cannot be easily achieved by laboratory experiments and can be used to explain the gap between physical processes and existing macro-scale models. We focus on direct numerical simulations: we solve the Navier-Stokes equations for mass and momentum conservation in the pore space and employ the Volume Of Fluid (VOF) method to track the evolution of the interface. In the VOF the distribution of the phases is described by a fluid function (whole-domain formulation) and special boundary conditions account for the wetting properties of the porous medium. In the first part of this thesis we simulate drainage in a 2-D Hele-Shaw cell filled with cylindrical obstacles. We show that the proposed approach can handle very large density and viscosity ratios and it is able to model the transition from stable displacement to viscous fingering. We then focus on the interpretation of the macroscopic capillary pressure showing that pressure average techniques are subject to several limitations and they are not accurate in presence of viscous effects and trapping. On the contrary an energy-based definition allows separating viscous and capillary contributions. In the second part of the thesis we investigate inertia effects associated with abrupt and irreversible reconfigurations of the menisci caused by interface instabilities. As a prototype of these phenomena we first consider the dynamics of a meniscus in an angular pore. We show that in a network of cubic pores, jumps and reconfigurations are so frequent that inertia effects lead to different fluid configurations. Due to the non-linearity of the problem, the distribution of the fluids influences the work done by pressure forces, which is in turn related to the pressure drop in Darcy's law. This suggests that these phenomena should be taken into account when upscaling multiphase flow in porous media. The last part of the thesis is devoted to proving the accuracy of the numerical approach by validation with experiments of unstable primary drainage in a quasi-2D porous medium (i.e., Hele-Shaw cell filled with cylindrical obstacles). We perform simulations under different boundary conditions and using different models (2-D integrated and full 3-D) and we compare several macroscopic quantities with the corresponding experiment. Despite the intrinsic challenges of modeling unstable displacement, where by definition small perturbations can grow without bounds, the numerical method gives satisfactory results for all the cases studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data of methylene blue number and iodine number of activated carbons samples were calibrated against the respective surface area, micropore volume and total pore volume using multiple regression. The models obtained from the calibrations were used in predicting these physical properties of a test group of activated carbon samples produced from several raw materials. In all cases, the predicted values were in good agreement with the expected values. The method allows extracting more information from the methylene blue and iodine adsorption studies than normally obtained with this type of material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hybrid 3-(1,4-phenylenediamine)propylsilica xerogel was obtained starting from two different organic precursor quantity (5 and 8 mmol) to 22 mmol of TEOS, in the synthesis. The xerogel samples were characterized by using CHN elemental analysis, N2 adsorption-desorption isotherms, infrared thermal analysis. The xerogel was used as metal sorbent for Cu2+, Cd2+ and Pb2+ in aqueous solution with concentration range of 10-3 to 10-5 mmol l-1. The quantity of organic precursor added in the synthesis influences the characteristics of the xerogel as morphology and thermal stability, as well as the metal adsorption capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Connexin46 (Cx46) forms functional hemichannels in the absence of contact by an apposed hemichannel and we have used these hemichannels to study gating and permeation at the single channel level with high time resolution. Using both cell-attached and -excised patch configurations, we find that single Cx46 hemichannels exhibit some properties expected of half of a gap junction channel, as well as novel properties. Cx46 hemichannels have a large unitary conductance (~300 pS) and a relatively large pore as inferred from permeability to TEA. Both monovalent cations and anions can permeate, but cations are substantially more permeable. The open channel conductance shows marked inward rectification in symmetric salts. We find that the conductance and permeability properties of Cx46 cell-cell channels can be explained by the series addition of two hemichannels. These data suggest that the pore structures of unapposed hemichannels and cell-cell channels are conserved. Also like cell-cell channels, unapposed Cx46 hemichannels are closed by elevated levels of H+ or Ca2+ ions on the cytoplasmic face. Closure occurs in excised patches indicating that the actions of these agents do not require a soluble cytoplasmic factor. Fast (<0.5 ms) application of H+ to either side of the open hemichannel causes an immediate small reduction in unitary conductance followed by complete closure with latencies that are dependent on H+ concentration and side of application; sensitivity is much greater to H+ on the cytoplasmic side. Closure by cytoplasmic H+ does not require that the hemichannel be open. Thus, H+ ions readily permeate Cx46 hemichannels, but at high enough concentration close them by acting at a cytoplasmic site(s) that causes a conformational change resulting in complete closure. Extracellular H+ may permeate to act on the cytoplasmic site or act on a lower affinity extracellular site. Thus, the unapposed hemichannel is a valuable tool in addressing fundamental questions concerning the operation of gap junction channels that are difficult to answer by existing methods. The ability of Cx46, and perhaps other connexins, to form functional unapposed hemichannels that are opened by moderate depolarization may represent an unexplored role of connexins as mediators of transport across the plasma membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sm2O3 - vanadia catalysts have been prepared by wet impregnation method using NH4VO3 solution. The surface properties of the prepared catalysts have been studied using FTIR. XRD. surface area and pore volume data. The acid-base properties of the system have been investigated by titrimetric method using Hammett indicators. adsorption of electron acceptors as well as decomposition of cyclohexanol. Phenol alkylation reaction by methanol has been carried out to investigate the catalytic activity. It has been observed that the selectivity of the products depends upon the composition of the supported system

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucoamylase was immobilized on acid activated montmorillonite clay via two different procedures namely adsorption and covalent binding. The immobilized enzymes were characterized by XRD, NMR and N2 adsorption measurements and the activity of immobilized glucoamylase for starch hydrolysis was determined in a batch reactor. XRD shows intercalation of enzyme into the clay matrix during both immobilization procedures. Intercalation occurs via the side chains of the amino acid residues, the entire polypeptide backbone being situated at the periphery of the clay matrix. 27Al NMR studies revealed the different nature of interaction of enzyme with the support for both immobilization techniques. N2 adsorption measurements indicated a sharp drop in surface area and pore volume for the covalently bound glucoamylase that suggested severe pore blockage. Activity studies were performed in a batch reactor. The adsorbed and covalently bound glucoamylase retained 49% and 66% activity of the free enzyme respectively. They showed enhanced pH and thermal stabilities. The immobilized enzymes also followed Michaelis–Menten kinetics. Km was greater than the free enzyme that was attributed to an effect of immobilization. The immobilized preparations demonstrated increased reusability as well as storage stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One-pot acetalizations of cyclohexanone. acetophenone and benzophenone were carried out using methanol over H-montmorillonite clay (a mesoporous material). silica, alumina, and different zeolites such as HFAU-Y.HBeta, H-ZSM-5, and H-mordenite. In all the cases a single product-the corresponding dimethylacetal-was obtained in high yields. Hemiacetal formation was not observed with any catalyst. A comparison of catalytic activity indicated that montmorillonite K-10 is the most active catalyst for the reaction. As evidenced by the reaction time studies, the catalyst decay is greater over the zeolite catalyst than over the clay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zeolites have established themselves as industrial catalysts for over two decades for a variety of hydrocarbon processing reactions where acidity and shape selectivity are important factors. As solid catalysts, zeolites may be advantageous and superior compared to their homogenous counterparts due to their characteristic properties. It is only in recent years that the utility of zeolites for organic synthesis is recognized for producing specific organic intermediates and fine chemicals in high selectivity. In this thesis an attempt has been made to compare the catalytic activity of some medium and large pore zeolites in a few alkylation and acylation reactions. The work reported in the present study is basically centered around the following zeolites namely, ZSM-5, mordenite, zeolite Y and beta. The major reactions carried out were benzoylation of o-xylene, propionylation of toluene and anisole and benzylation of oxylene. . The programme involves the synthesis, modifications and characterization of the zeolite catalysts by various methods. The influence of various parameters such as non-framework cations, Si/Al ratio of zeolites, temperature of the reaction, catalyst concentration, molar ratio of the reactants and recycling of the catalysts were also examined upon the conversion of reactants and the formation of the desired products in the alkylation/ acylation reactions. The general conclusions drawn by us from the results obtained are summarized in the last chapter of the thesis. Zeolite beta ofi'ers interesting opportunities as a potential catalyst in alkylation reactions and the area of catalysis by medium and large pore zeolites is very fascinating and there is plenty of scope for further research in this field. Moreover, zeolite based catalysts are effective in meeting current industrial processing and more stringent environment pollution limits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Little is known about the sustainability of irrigated oasis agriculture in northern Oman. The objective of this study therefore was to examine which factors allowed agricultural productivity to be apparently maintained during the two millenia of a mountain oasis’ existence. Soil moisture and physico-chemical properties were measured in a typical flood-irrigated field sown to alfalfa (Medicago sativa L.). Particle size, organic (C_org) and inorganic carbon content, pH and electrical conductivity (EC)of the soil profile were analyzed at 0.15, 0.45 and 1.00 m. Saturated hydraulic conductivity and the soil’s apparent bulk density and water potential were determined from undisturbed samples at 0.05, 0.25 and 0.60 m. During irrigation cycles of 6–9 days, volumetric water contents ranged from 30% to 13%. A tracer experiment with potassium bromide revealed that 52–56% of the irrigation water was stored in the upper 0.4 m of the soil. The rest of the water moved further down the profile, thus providing the necessary drainage to avoid the build-up of toxic salt concentrations. Due to differences in pore size, plant-available water in the topsoil amounted to 18.7% compared to 13% and 13.5% at 0.25- and 0.60-m depth, respectively. The aggregate structure in the upper 1.0 m of the profile is likely preserved by concentrations of calcium carbonate (CaCO3) from 379 to 434 mg kg^-1 and C_org from 157 to 368 mg kg^-1 soil. The data indicate that the sustainability of this irrigated landuse system is due to high water quality with low sodium but high CaCO3 concentration, the elaborate terrace structure and water management which allows adequate drainage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five soy proteins isolate (SPI) fractions were produced using two microfiltration membranes with different pore sizes. Fractionation was carried out on SPI produced by isoelectric precipitation of a crude protein extract. The five fractions were two retentates and two permeates from the two membranes, the fifth fraction was obtained as the retentate on the smaller-po re- sized membrane fed with the permeate from the larger-pore-sized membrane. Solubility, foaming and emulsifying properties of the collected fractionates were investigated. It was observed that in the pH range 3-8 the retentates featured superior solubility compared with permeates. There was no significant difference (p > 0.0 1) in solubility between the retentates and SPI at pH >= 6. Foaming characteristics of the fractions followed the same trend as solubility with regard to foam expansion. There was, however, no particular trend observed with regards to foam stability. Emulsions stabilised by the retentates exhibited higher values (p<0.01) of emulsion stability index (ESI) and emulsifying activity index (EAI) than those stabilised with permeates. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) profiles indicated that the fractions exhibiting high functionality in terms of solubility, foaming and emulsifying properties were also richer in 7S globulin soy protein subunits. Isoelectric focussing (IEF) profiles showed that retentates were richer in species with isoelectric points (pl) between 5.2 and 5.6 while permeates featured more prominently at pis between 4.5 and 4.8. (C) 2006 Elsevier Ltd. All rights reserved.