967 resultados para POLY(P-PHENYLENEVINYLENE) COPOLYMERS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The artificial dsRNA polyriboinosinic acid-polyribocytidylic acid, poly(I:C), is a potent adjuvant candidate for vaccination, as it strongly drives cell-mediated immunity. However, because of its effects on non-immune bystander cells, poly(I:C) administration may bear danger for the development of autoimmune diseases. Thus poly(I:C) should be applied in the lowest dose possible. We investigated microspheres carrying surface-assembled poly(I:C) as a two-in-one adjuvant formulation to stimulate maturation of monocyte-derived dendritic cells (MoDCs). Negatively charged polystyrene microspheres were equipped with a poly(ethylene glycol) corona through electrostatically driven surface assembly of a library of polycationic poly(l-lysine)-graft-poly(ethylene glycol) copolymers, PLL-g-PEG. Stable surface assembly of poly(I:C) was achieved by incubation of polymer-coated microspheres in an aqueous poly(I:C) solution. Surface-assembled poly(I:C) exhibited a strongly enhanced efficacy to stimulate maturation of MoDCs by up to two orders of magnitude, as compared to free poly(I:C). Multiple phagocytosis events were the key factor to enhance the efficacy. The cytokine secretion pattern of MoDCs after exposure to surface-assembled poly(I:C) differed from that of free poly(I:C), while their ability to stimulate T cell proliferation was similar. Overall, phagocytic signaling plays an important role in defining the resulting immune response to such two-in-one adjuvant formulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By expressing an array of pattern recognition receptors (PRRs), fibroblasts play an important role in stimulating and modulating the response of the innate immune system. The TLR3 ligand polyriboinosinic acid-polyribocytidylic acid, poly(I:C), a mimic of viral dsRNA, is a vaccine adjuvant candidate to activate professional antigen presenting cells (APCs). However, owing to its ligation with extracellular TLR3 on fibroblasts, subcutaneously administered poly(I:C) bears danger towards autoimmunity. It is thus in the interest of its clinical safety to deliver poly(I:C) in such a way that its activation of professional APCs is as efficacious as possible, whereas its interference with non-immune cells such as fibroblasts is controlled or even avoided. Complementary to our previous work with monocyte-derived dendritic cells (MoDCs), here we sought to control the delivery of poly(I:C) surface-assembled on microspheres to human foreskin fibroblasts (HFFs). Negatively charged polystyrene (PS) microspheres were equipped with a poly(ethylene glycol) (PEG) corona through electrostatically driven coatings with a series of polycationic poly(L-lysine)-graft-poly(ethylene glycol) copolymers, PLL-g-PEG, of varying grafting ratios g from 2.2 up to 22.7. Stable surface assembly of poly(I:C) was achieved by incubation of polymer-coated microspheres with aqueous poly(I:C) solutions. Notably, recognition of both surface-assembled and free poly(I:C) by extracellular TLR3 on HFFs halted their phagocytic activity. Ligation of surface-assembled poly(I:C) with extracellular TLR3 on HFFs could be controlled by tuning the grafting ratio g and thus the chain density of the PEG corona. When assembled on PLL-5.7-PEG-coated microspheres, poly(I:C) was blocked from triggering class I MHC molecule expression on HFFs. Secretion of interleukin (IL)-6 by HFFs after exposure to surface-assembled poly(I:C) was distinctly lower as compared to free poly(I:C). Overall, surface assembly of poly(I:C) may have potential to contribute to the clinical safety of this vaccine adjuvant candidate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer light-emitting devices (PLEDs) with poly(2-methoxy-5-hexyloxy)-p-phenylenevinylene (OC1OC6-PPV) as the emissive layer were studied with an electron injection layer of ionomers consisting of copolymers of styrene and methylmethacrylate (PS/PMMA) with 3, 6 and 8 mol% degree of sulfonation. The ionomers were able to form very thin films over the emissive layer, with less than 30 nm. Additionally, the presence of ion pairs of ionomer suppresses the tendency toward dewetting of the thin film of ionomer (similar to 10 nm) which can cause malfunction of the device. The effect of the ionomers was investigated as a function of the ion content. The devices performance, characterized by their current density and luminance intensity versus voltage, showed a remarkable increase with the ionomer layer up to 6 mol% of ionic groups, decreasing after that for the 8 mol% ionomer device. The study of the impedance spectroscopy in the frequency range from 0.1 to 10(6) Hz showed that the injection phenomena dominate over the transport in the electroluminescent polymer bulk. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports a detailed spectroscopy study of a series of multiblock conjugated nonconjugated copolymers built by p-phenylene vinylene type units (PV) and octamethylene spacers, namely, poly(1,8-octanedioxy-2,6-dimethoxy-1,4-phenylene-1,2-ethenylene) (LaPPS18). The relative proportions of the PV and aliphatic segments were estimated on the basis of solid-state NMR and Raman spectroscopy. The overall structure was characterized by wide angle X-ray diffraction; H-1 wide-line dipolar chemical shift correlation (DIPSHIFT), and centerband-only detection of exchange (CODEX) NMR data, that together with glass transition temperatures allowed us to identify the groups involved in the molecular dynamics. These different structural properties were used to explain the photoluminescence properties in terms of peak position and spectral profile

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The controlled synthesis of poly(neopentyl p-styrene sulfonate) (PNSS) using RAFT polymerisation has been studied. Selected experimental conditions led to the production of PNSS with variable molecular weights and low dispersities (D{stroke}≤1.50). The controlled synthesis of poly(neopentyl p-styrene sulfonate) (PNSS) using reversible addition-fragmentation chain transfer polymerisation has been studied under a wide range of experimental conditions. PNSS can be used as an organic-soluble, thermally labile precursor for industrially valuable poly(p-styrene sulfonate), widely employed in technologies such as ionic exchange membranes and organic electronics. The suitability of two different chain transfer agents, three solvents, three different monomer concentrations and two different temperatures for the polymerisation of neopentyl p-styrene sulfonate is discussed in terms of the kinetics of the process and characteristics of the final polymer. Production of PNSS with systematically variable molecular weights and low dispersities (D{stroke} ≤1.50 in all cases) has been achieved using 2-azidoethyl 2-(dodecylthiocarbonothioylthio)-2-methylpropionate in anisole at 75°C, with an initial monomer concentration of 4.0molL-1. Finally, a poly(neopentyl p-styrene sulfonate)-b-polybutadiene-b-poly(neopentyl p-styrene sulfonate) (PNSS-b-PBD-b-PNSS) triblock copolymer has been synthesised via azide-alkyne click chemistry. Moreover, subsequent thermolysis of the PNSS moieties generated poly(p-styrene sulfonate) end blocks. This strategy allows the fabrication of amphiphilic copolymer films from single organic solvents without the need for post-deposition chemical treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(p-xylylenes), PPX, are a class of high performance insulating materials with many applications in the electronic component industry. We review herewith the most important synthetic routes to these polymers, described in the literature, since 1904.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Langmuir-Blodgett (LB) and layer-by-layer films (LbL) of a PPV (p-phenylenevinylene) derivative, an azo compound and tetrasulfonated phthalocyanines were successfully employed as transducers in an ""electronic tongue"" system for detecting trace levels of phenolic compounds in water. The choice of the materials was based on their distinct electrical natures, which enabled the array to establish a fingerprint of very similar liquids. Impedance spectroscopy measurements were taken in the frequency range from 10 Hz to 1 MHz, with the data analysed with principal component analysis (PCA). The sensing units were obtained from five-layer LB films of (poly[(2-methoxy-5-n-hexyloxy)-p-phenylenevinylene]), OC(1)OC(18)-PPV (poly(2-methoxy,5-(n-octadecyl)-p-phenylenevinylene)), DR (HEMA-co-DR13MA (poly-(hydroxyethylmethacrylate-co-[4`-[[2-(methacryloyloxy)-ethyl]ethylamino]-2-chloro-4-nitroazobenzene]))) and five-bilayer LbL films of tetrasulfonated metallic phthalocyanines deposited onto gold interdigitated electrodes. The sensors were immersed into phenol, 2-chloro-4-methoxyphenol, 2-chlorophenol and 3-chlorophenol (isomers) solutions at 1 x 10(-9) mol L(-1), with control experiments carried out in ultra pure water. Samples could be distinguished if the principal component analysis (PCA) plots were made with capacitance values taken at 10(3) Hz, which is promising for detection of trace amounts of phenolic pollutants in natural water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel poly(p-xylylene), PPX, derivative bearing alkoxyphenyl side groups was electrochemically synthesized in 87% yield. The polymer, poly(4`-hexyloxy-2,5-biphenyleneethylene) (PHBPE), presented a fraction (92%) soluble in common organic solvents. It showed to be thermally resistant up to 185 degrees C. UV-vis analysis revealed an E-gap of 3.5 eV Gas sensors made from thin films of 10-camphorsulfonic acid-doped PHBPE deposited on interdigitated electrodes exhibited significant changes in electrical conductance upon exposure to five VHOCs: 1,2-dichloroethane, bromochloromethane, trichloromethane, dichloromethane and tetrachloromethane. The conductance decreased after exposure to tetrachloromethane and increased after exposure to all the other VHOCs. Three-dimensional plots of relative response versus time of half response versus time of half recovery showed good discrimination between the five VHOCs tested. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure of chemically prepared poly-p-phenylenediamine (PpPD) was investigated by Resonance Raman (RR), FTIR, UV-VIS-NIR, X-ray photoelectron (XPS), X-ray Absorption at Nitrogen K edge (N K XANES), and Electron paramagnetic Resonance (EPR) spectroscopies. XPS, EPR and N K XANES data reveal that polymeric structure is formed mainly by radical cations and dication nitrogens. It excludes the possibility that PpPD chains have azo or phenazinic nitrogens, as commonly is supposed in the literature. The RR spectrum of PpPD shows two characteristic bands at 1527 cm(-1) and 1590 cm(-1) that were assigned to nu C=N and nu C=C of dication units, respectively, similar to polyaniline in pernigraniline base form. The presence of radical cations was confirmed by Raman data owing to the presence of bands at 1325/1370 cm(-1), characteristic of nu C-N of polaronic segments. Thus, all results indicate that PpPD has a doped PANT-like structure, with semi-quinoid and quinoid rings, and has no phenazinic rings, as observed for poly-o-phenylenediamine. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrical characterization of a high efficient multilayer polymer light emitting diode using poly[(2-methoxy-5-hexyloxy)-p-phenylenevinylene] as the emissive layer and an anionic fluorinated surfactant as the electron transport layer was performed. For the sake of comparison, a conventional single layer device was fabricated. The density current vs. voltage measurements revealed that the conventional device has a higher threshold voltage and lower current compared to the surfactant modified device. The effective barrier height for electron injection was suppressed. The influence of the interfaces and bulk contributions to the dc and high frequencies conductivities of the devices was also discussed. (c) 2006 Springer Science + Business Media, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer light-emitting devices (PLEDs) have been produced with Langmuir-Blodgett (LB) films from poly(2-methoxy-5-hexyloxy)-p-phenylenevinylene (OC1OC6-PPV) as the emissive layer and an ionomer of a copolymer of styrene and methylmethacrylate (PS/PMMA) as an electron-injection layer. The main features of such devices are the low operating voltages, obtainable firstly due to the good quality of the ultrathin LB films that allows PLEDs to be produced reproducibly and secondly due to the improved electrical and luminance properties brought by the electron-injection layer. Also demonstrated is the superior performance of an all-LB device compared to another one produced with cast films of the same materials. Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report optical and morphological properties of poly(2-methoxy-5-hexyloxy-p-phenylenevinylene) (OC1OC6-PPV) films processed by casting, spin-coating (SC) and Langmuir-Blodgett (LB) techniques. The absorption spectra are practically the same, with an absorption maximum at approximately at 500 nm. For the photoluminescence (PL) spectra at low temperature (T=10K), a small but significant difference was noted in the cast film, in comparison with the LB and SC films. The zero-phonon transition shifted from 609 nm for the LB film to 615 and 621 nm for the SC and cast films, respectively. At room temperature, the PL spectra are similar for all films, and blue shifted by ca. 25 nm in comparison with the spectra at low temperature due to thermal disorder. Using atomic force microscopy (AFM) we inferred that the distinctive behavior of the cast film, probably associated with structural defects, is related to the large thickness of this film. The surface roughness, which was surprisingly higher for the LB film, apparently played no role in the emission properties of OC1OC6-PPV films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)