994 resultados para PHYSIOLOGICAL ECOLOGY
Resumo:
Mechanistic models such as those based on dynamic energy budget (DEB) theory are emergent ecomechanics tools to investigate the extent of fitness in organisms through changes in life history traits as explained by bioenergetic principles. The rapid growth in interest around this approach originates from the mechanistic characteristics of DEB, which are based on a number of rules dictating the use of mass and energy flow through organisms. One apparent bottleneck in DEB applications comes from the estimations of DEB parameters which are based on mathematical and statistical methods (covariation method). The parameterisation process begins with the knowledge of some functional traits of a target organism (e. g. embryo, sexual maturity and ultimate body size, feeding and assimilation rates, maintenance costs), identified from the literature or laboratory experiments. However, considering the prominent role of the mechanistic approach in ecology, the reduction of possible uncertainties is an important objective. We propose a revaluation of the laboratory procedures commonly used in ecological studies to estimate DEB parameters in marine bivalves. Our experimental organism was Brachidontes pharaonis. We supported our proposal with a validation exercise which compared life history traits as obtained by DEBs (implemented with parameters obtained using classical laboratory methods) with the actual set of species traits obtained in the field. Correspondence between the 2 approaches was very high (>95%) with respect to estimating both size and fitness. Our results demonstrate a good agreement between field data and model output for the effect of temperature and food density on age-size curve, maximum body size and total gamete production per life span. The mechanistic approach is a promising method of providing accurate predictions in a world that is under in creasing anthropogenic pressure.
Resumo:
The distribution patterns of many species in the intertidal zone are partly determined by their ability to survive and recover from tidal emersion. During emersion, most crustaceans experience gill collapse, impairing gas exchange. Such collapse generates a state of hypoxemia and a hypercapnia-induced respiratory acidosis, leading to hyperlactaemia and metabolic acidosis. However, how such physiological responses to emersion are modified by prior exposure to elevated CO2 and temperature combinations, indicative of future climate change scenarios, is not known. We therefore investigated key physiological responses of velvet swimming crabs, Necora puber, kept for 14 days at one of four pCO(2)/temperature treatments (400 mu atm/10 degrees C, 1000 mu atm/10 degrees C, 400 mu atm/15 degrees C or 1000 mu atm/15 degrees C) to experimental emersion and recovery. Pre-exposure to elevated pCO(2) and temperature increased pre-emersion bicarbonate ion concentrations [HCO3-], increasing resistance to short periods of emersion (90 min). However, there was still a significant acidosis following 180 min emersion in all treatments. The recovery of extracellular acid-base via the removal of extracellular pCO(2) and lactate after emersion was significantly retarded by exposure to both elevated temperature and pCO(2). If elevated environmental pCO(2) and temperature lead to slower recovery after emersion, then some predominantly subtidal species that also inhabit the low to mid shore, such as N. puber, may have a reduced physiological capacity to retain their presence in the low intertidal zone, ultimately affecting their bathymetric range of distribution, as well as the structure and diversity of intertidal assemblages.
Resumo:
The relative plasticity hypothesis predicts that alternative tactics are associated with changes in steroid hormone levels. In species with alternative male reproductive tactics, the highest androgen levels have usually been reported in dominant males. However, in sociable species, dominant males show amicable behaviors to gain access to females, which might conflict with high testosterone levels. We compared testosterone, corticosterone, and resting metabolic rate in male striped mice (Rhabdomys pumilio) following a conditional strategy with three different reproductive tactics: (i) philopatric group-living males, (ii) solitary-living roamers, (iii) dominant but sociable group-living territorial breeders. Philopatrics had the lowest testosterone but highest corticosterone levels, suggesting that they make the best of a bad job. Dominant territorial breeders had lower testosterone levels than roamers, which have a lower competitive status. Roamers had the highest testosterone levels, which might promote risky behavior, such as invading territories defended by territorial males. Roamers also had lower resting metabolic rates than either type of group-living males. Our results suggest that dominant males' testosterone levels reflect a trade-off between low testosterone amicable behavior and high testosterone dominance behavior.
Resumo:
1. Recent work shows that organisms possess two strategies of immune response: personal immunity, which defends an individual, and social immunity, which protects other individuals, such as kin. However, it is unclear how individuals divide their limited resources between protecting themselves and protecting others.
2. Here, with experiments on female burying beetles, we challenged the personal immune system and measured subsequent investment in social immunity (antibacterial activity of the anal exudates).
3. Our results show that increased investment in one aspect of personal immunity (wound repair) causes a temporary decrease in one aspect of the social immune response.
4. Our experiments further show that by balancing investment in personal and social immunity in this way during one breeding attempt, females are able to defend their subsequent lifetime reproductive success.
5. We discuss the nature of the physiological trade-off between personal and social immunity in species that differ in the degree of eusociality and coloniality, and suggest that it may also vary within species in relation to age and partner contributions to social immunity.
Resumo:
Understanding the biology of offshore species is hardened by the difficulties of sampling in the deep-sea environment. Additionally, due to the vastness of the open ocean, knowledge of early life histories of pelagic larvae is still relatively scarce. In decapod species with bentho-pelagic lifestyle, the transition from life in the seafloor to the water column not only is associated with drastic morphological metamorphosis, but also with changes in behavior and feeding ecology. The purpose of the present thesis was to investigate physiological, biochemical and behavioral adaptation occurring during early development of such species. The Norway lobster, Nephrops norvegicus, and the crab Monodaeus couchi were used as a model as these two species are encountered off the NE Atlantic shelf at depth greater than 300 m. Chapter 1 introduces the challenges faced by both adult and larvae inhabiting such remote habitats, including the effect of food availability on development and oceanographic processes on dispersal and recruitment. The thesis follows early life histories, starting with within-brood variability in the fatty acid (FA) profile displayed by developing N. norvegicus embryos. There were no differences in the FA composition of embryos sampled from both sides of the brooding chamber in most females. However, all females exhibited significant differences in the FA profiles of embryos sampled from different pleopods. Potential causes for the variations recorded may be differential female investment during oocyte production or shifts in FA catabolism during the incubation period promoted by embryo’s location within the brooding chamber. Next, feeding rates and digestive enzymes activity of the early stage larvae was investigated in N. norvegicus. Both stages were able to maximize food intake when larvae were scarce and showed increased feeding rate following periods of starvation. Amylase activity indicated that carbohydrates are not the primary energy reserve and that feeding may be required soon after hatching to trigger amylase activity. Protease activity indicated that protein reserves are catabolized under starvation. These results indicate that larvae may maximize prey ingestion in the presence of plankton patches with higher food abundance and minimize the deleterious effects induced by previous periods of intermittent starvation or unsuitable prey densities/types. Additionally, changes in enzymatic activity may allow newly hatched N. norvegicus larvae to metabolize protein reserves to overcome short-term starvation. Vertical migration behavior and the influence of oceanographic properties were studied next. All zoeal stages of M. couchi displayed reverse diel vertical migration. Abundance of early stages was correlated with chlorophyll a levels. An ontogenic shift in vertical distribution explained the results; earlier zoeal stages remain in the food-rich upper water column while later stages migrate to the bottom for settlement. This vertical migration behavior is likely to affect horizontal distribution of larvae. Indeed, global current patterns will result in low inter-annual variations in decapod larvae recruitment, but short term variations such as upwelling events will cause deviation from the expected dispersal pattern. Throughout development, from the embryo to metamorphosis into benthic juvenile, offshore decapods face many challenges. For the developing individual survivorship will depend heavily on food availability but also on the reserves passed on by the mother. Even though vertical migration behavior can allow the larvae to take advantage of depth varying currents for transport, the effect of general circulation pattern will superimpose local current and influence feeding conditions and affect dispersal and recruitment.
Resumo:
Study Objectives: Interspecific variation in sleep measured in captivity correlates with various physiological and environmental factors, including estimates of predation risk in the wild. However, it remains unclear whether prior comparative studies have been confounded by the captive recording environment. Herein we examine the impact of predation pressure on sleep in sloths living in the wild. Design: Comparison of two closely related sloth species, one exposed to predation and one free from predation. Setting: Panamanian mainland rainforest (predators present) and island mangrove (predators absent). Participants: Mainland (Bradypus variegatus, 5 males and 4 females) and island (Bradypus pygmaeus, 6 males) sloths. Interventions: None. Measurements and Results: EEG and EMG activity were recorded using a miniature data logger. Although both species spent between 9 and 10 hours per day sleeping, the mainland sloths showed a preference for sleeping at night, whereas island sloths showed no preference for sleeping during the day or night. EEG activity during NREM sleep showed lower low-frequency power, and increased spindle and higher frequency power in island sloths when compared to mainland sloths. Conclusions: In sloths sleeping in the wild, predation pressure influenced the timing of sleep, but not the amount of time spent asleep. The preference for sleeping at night in mainland sloths may be a strategy to avoid detection by nocturnal cats. The pronounced differences in the NREM sleep EEG spectrum remain unexplained, but might be related to genetic or environmental factors.
Resumo:
Thesis written in co-mentorship with Robert Michaud.
Resumo:
Parasitoids are the most important natural enemies of many insect species. Larvae of many Drosophila species can defend themselves against attack by parasitoids through a cellular immune response called encapsulation. The paper reviews recent studies of the evolutionary biology and ecological genetics of resistance in Drosophila, concentrating on D. melanogaster. The physiological basis of encapsulation, and the genes known to interfere with resistance are briefly summarized. Evidence for within- and between-population genetic variation in resistance from isofemale line, artificial selection and classical genetic studies are reviewed. There is now firm evidence that resistance is costly to Drosophila, and the nature of this cost is discussed, and the possibility that it may involve a reduction in metabolic rate considered. Comparative data on encapsulation and metabolic rates across seven Drosophila species provides support for this hypothesis. Finally, the possible population and community ecological consequences of evolution in the levels of host resistance are examined.
Resumo:
Diverse invertebrate and vertebrate species live in association with plants of the large Neotropical family Bromeliaceae. Although previous studies have assumed that debris of associated organisms improves plant nutrition, so far little evidence supports this assumption. In this study we used isotopic ((15)N) and physiological methods to investigate if the treefrog Scinax hayii, which uses the tank epiphytic bromeliad Vriesea bituminosa as a diurnal shelter, contributes to host plant nutrition. In the field, bromeliads with frogs had higher stable N isotopic composition (delta(15)N) values than those without frogs. Similar results were obtained from a controlled greenhouse experiment. Linear mixing models showed that frog feces and dead termites used to simulate insects that eventually fall inside the bromeliad tank contributed, respectively, 27.7% (+/- 0.07 SE) and 49.6% (+/- 0.50 SE) of the total N of V. bituminosa. Net photosynthetic rate was higher in plants that received feces and termites than in controls; however, this effect was only detected in the rainy, but not in the dry season. These results demonstrate for the first time that vertebrates contribute to bromeliad nutrition, and that this benefit is seasonally restricted. Since amphibian-bromeliad associations occur in diverse habitats in South and Central America, this mechanism for deriving nutrients may be important in bromeliad systems throughout the Neotropics.