63 resultados para PHOTOPRODUCTS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thymidine dinucleotide (pTpT) stimulates melanogenesis in mammalian pigment cells and intact skin, mimicking the effects of UV irradiation and UV-mimetic DNA damage. Here it is shown that, in addition to tanning, pTpT induces a second photoprotective response, enhanced repair of UV-induced DNA damage. This enhanced repair results in a 2-fold increase in expression of a UV-damaged chloramphenicol acetyltransferase expression vector transfected into pTpT-treated skin fibroblasts and keratinocytes, compared with diluent-treated cells. Direct measurement of thymine dimers and (6–4) photoproducts by immunoassay demonstrates faster repair of both of these UV-induced photoproducts in pTpT-treated fibroblasts. This enhanced repair capacity also improves cell survival and colony-forming ability after irradiation. These effects of pTpT are accomplished, at least in part, by the up-regulation of a set of genes involved in DNA repair (ERCC3 and GADD45) and cell cycle inhibition (SDI1). At least two of these genes (GADD45 and SDI1) are known to be transcriptionally regulated by the p53 tumor suppressor protein. Here we show that pTpT activates p53, leading to nuclear accumulation of this protein, and also increases the specific binding of this transcription factor to its DNA consensus sequence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spectral changes in the photocycle of the photoactive yellow protein (PYP) are investigated by using ab initio multiconfigurational second-order perturbation theory at the available structures experimentally determined. Using the dark ground-state crystal structure [Genick, U. K., Soltis, S. M., Kuhn, P., Canestrelli, I. L. & Getzoff, E. D. (1998) Nature (London) 392, 206–209], the ππ* transition to the lowest excited state is related to the typical blue-light absorption observed at 446 nm. The different nature of the second excited state (nπ*) is consistent with the alternative route detected at 395-nm excitation. The results suggest the low-temperature photoproduct PYPHL as the most plausible candidate for the assignment of the cryogenically trapped early intermediate (Genick et al.). We cannot establish, however, a successful correspondence between the theoretical spectrum for the nanosecond time-resolved x-ray structure [Perman, B., Šrajer, V., Ren, Z., Teng, T., Pradervand, C., et al. (1998) Science 279, 1946–1950] and any of the spectroscopic photoproducts known up to date. It is fully confirmed that the colorless light-activated intermediate recorded by millisecond time-resolved crystallography [Genick, U. K., Borgstahl, G. E. O., Ng, K., Ren, Z., Pradervand, C., et al. (1997) Science 275, 1471–1475] is protonated, nicely matching the spectroscopic features of the photoproduct PYPM. The overall contribution demonstrates that a combined analysis of high-level theoretical results and experimental data can be of great value to perform assignments of detected intermediates in a photocycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exposure to DNA-damaging agents triggers signal transduction pathways that are thought to play a role in maintenance of genomic stability. A key protein in the cellular processes of nucleotide excision repair, DNA recombination, and DNA double-strand break repair is the single-stranded DNA binding protein, RPA. We showed previously that the p34 subunit of RPA becomes hyperphosphorylated as a delayed response (4–8 h) to UV radiation (10–30 J/m2). Here we show that UV-induced RPA-p34 hyperphosphorylation depends on expression of ATM, the product of the gene mutated in the human genetic disorder ataxia telangiectasia (A-T). UV-induced RPA-p34 hyperphosphorylation was not observed in A-T cells, but this response was restored by ATM expression. Furthermore, purified ATM kinase phosphorylates the p34 subunit of RPA complex in vitro at many of the same sites that are phosphorylated in vivo after UV radiation. Induction of this DNA damage response was also dependent on DNA replication; inhibition of DNA replication by aphidicolin prevented induction of RPA-p34 hyperphosphorylation by UV radiation. We postulate that this pathway is triggered by the accumulation of aberrant DNA replication intermediates, resulting from DNA replication fork blockage by UV photoproducts. Further, we suggest that RPA-p34 is hyperphosphorylated as a participant in the recombinational postreplication repair of these replication products. Successful resolution of these replication intermediates reduces the accumulation of chromosomal aberrations that would otherwise occur as a consequence of UV radiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Xeroderma pigmentosum (XP) is caused by a defect in nucleotide excision repair. Patients in the complementation group E (XP-E) have the mildest form of the disease and the highest level of residual repair activity. About 20% of the cell strains derived from XP-E patients lack a damaged DNA-binding protein (DDB) activity that binds to ultraviolet-induced (6-4) photoproducts with high affinity. We report here that cell-free extracts prepared from XP-E cell strains that either lacked or contained DDB activity were severely defective in excising DNA damage including (6-4) photoproducts. However, this excision activity defect was not restored by addition of purified DDB that, in fact, inhibited removal of (6-4) photoproducts by the human excision nuclease reconstituted from purified proteins. Extensive purification of correcting activity from HeLa cells revealed that the correcting activity is inseparable from the human replication/repair protein A [RPA (also known as human single stranded DNA binding protein, HSSB)]. Indeed, supplementing XP-E extracts with recombinant human RPA purified from Escherichia coli restored excision activity. However, no mutation was found in the genes encoding the three subunits of RPA in an XP-E (DDB-) cell line. It is concluded that RPA functionally complements XP-E extracts in vitro, but it is not genetically altered in XP-E patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the ability of UV irradiation to induce pigmentation in vivo and in vitro is well documented, the intracellular signals that trigger this response are poorly understood. We have recently shown that increasing DNA repair after irradiation enhances UV-induced melanization. Moreover, addition of small DNA fragments, particularly thymine dinucleotides (pTpT), selected to mimic sequences excised during the repair of UV-induced DNA photoproducts, to unirradiated pigment cells in vitro or to guinea pig skin in vivo induces a pigment response indistinguishable from UV-induced tanning. Here we present further evidence that DNA damage and/or the repair of this damage increases melanization. (i) Treatment with the restriction enzyme Pvu II or the DNA-damaging chemical agents methyl methanesulfonate (MMS) or 4-nitroquinoline 1-oxide (4-NQO) produces a 4- to 10-fold increase in melanin content in Cloudman S91 murine melanoma cells and an up to 70% increase in normal human melanocytes, (ii) UV irradiation, MMS, and pTpT all upregulate the mRNA level for tyrosinase, the rate-limiting enzyme in melanin biosynthesis. (iii) Treatment with pTpT or MMS increases the response of S91 cells to melanocyte-stimulating hormone (MSH) and increases the binding of MSH to its cell surface receptor, as has been reported for UV irradiation. Together, these data suggest that UV-induced DNA damage and/or the repair of this damage is an important signal in the pigmentation response to UV irradiation. Because Pvu II acts exclusively on DNA and because MMS and 4-NQO, at the concentrations used, primarily interact with DNA, such a stimulus alone appears sufficient to induce melanogenesis. Of possible practical importance, the dinucleotide pTpT mimics most, if not all, of the effects of UV irradiation on pigmentation, tyrosinase mRNA regulation, and response to MSH without the requirement for antecedent DNA damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To investigate the role of nucleotide excision repair (NER) in the cellular processing of carcinogenic DNA photoproducts induced by defined, environmentally relevant portions of the solar wavelength spectrum, we have determined the mutagenic specificity of simulated sunlight (310-1100 nm), UVA (350-400 nm), and UVB (290-320 nm), as well as of the "nonsolar" model mutagen 254-nm UVC, at the adenine phosphoribosyltransferase (aprt) locus in NER-deficient (ERCC1) Chinese hamster ovary (CHO) cells. The frequency distributions of mutational classes induced by UVB and by simulated sunlight in repair-deficient CHO cells were virtually identical, each showing a marked increase in tandem CC-->TT transitions relative to NER-proficient cells. A striking increase in CC-->TT events was also previously documented for mutated p53 tumor-suppressor genes from nonmelanoma tumors of NER-deficient, skin cancer-prone xeroderma pigmentosum patients, compared to normal individuals. The data therefore indicate that the aprt gene in NER-deficient cultured rodent cells irradiated with artificial solar light generates the same distinctive "fingerprint" for sunlight mutagenesis as the p53 locus in NER-deficient humans exposed to natural sunlight in vivo. Moreover, in strong contrast to the situation for repair-component CHO cells, where a significant role for UVA was previously noted, the mutagenic specificity of simulated sunlight in NER-deficient CHO cells and of natural sunlight in humans afflicted with xeroderma pigmentosum can be entirely accounted for by the UVB portion of the solar wavelength spectrum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proton translocation experiments with intact cells of Halobacterium salinarium overproducing sensory rhodopsin I (SRI) revealed transport activity of SRI in a two-photon process. The vectoriality of proton translocation depends on pH, being outwardly directed above, and inwardly directed below, pH 5.7. Activation of the transport cycle requires excitation of the initial dark state of SRI, SRI590, to form the intermediate SRI380. Action spectra identify the photocycle intermediates SRI380 and SRI520 as the two photochemically reactive species in the outwardly directed transport process. As shown by flash photolysis experiments, SRI520 undergoes a so-far unknown photochemical reaction to SRI380 with a half-time of <200 micros. Mutation of SRI residue Asp-76, the residue which is equivalent to the proton acceptor Asp-85 in bacteriorhodopsin, to asparagine leads to inactivation of proton translocation. This demonstrates that the underlying mechanisms of proton transport in both retinal proteins share similar features. However, SRI is to our knowledge the first case where photochemical reactions between two thermally unstable photoproducts of a retinal protein constitute a catalytic ion transport cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho, foram estudadas as propriedades fotoquímica e/ou fotofísica de alguns compostos de coordenação de rênio(l) e ferro(I I). A irradiação dos complexos fac-[Re(CO)3(NN)(trans-L)]+, NN= 4,7-difenil-1,10- fenantrolina (ph2phen) ou 5-cloro-1,10-fenantrolina (Clphen) e L = 1,2-bis(4-piridil)etileno (bpe) ou 4-estirilpiridina (stpy), em acetonitrila ou em filme de poli(metacrilato de metila) (PMMA) resulta em variações espectrais condizentes com a fotoisomerização trans-cis do ligante coordenado. A determinação dos rendimentos quânticos para a fotorreação pela variação espectral resultou em valores aparentes, uma vez que o reagente e o fotoproduto absorvem na mesma região. Para a determinação do rendimento quântico real, Φreal, utilizou-se a técnica de 1H RMN, na qual os sinais do fotoproduto e do reagente são observados em regiões distintas com diferentes constantes de acoplamento. Os valores de Φreal obtidos para fac-[Re(CO)3h(NN)(trans-bpe)]+ (ph2phen: Φ313= 0,43 ± 0,03; Φ365= 0,44 ± 0,02; Φ404= 0,43 ± 0,02; Clphen: Φ313= 0,56 ± 0,03; Φ365= 0,55 ± 0,04; Φ404= 0,57 ± 0,06) são independentes do comprimento de onda de irradiação, indicando a existência de um único canal para a população do estado excitado 3ILtrans-bpe. Por outro lado, para fac-[Re(CO)3(NN)(trans-stpy)]+, os valores de Φreal sob irradiação a 404 nm são menores que os determinados para os demais comprimentos de onda de irradiação (ph2phen: Φ313= 0,60 ± 0,05; Φ365= 0,64 ± 0,09; Φ404= 0,42 ± 0,03; Clphen: Φ313= 0,52 ± 0,05; Φ365= 0,58 ± 0,02; Φ404= 0,41 ± 0,06), indicando que, a energias maiores, em que o Iigante absorve significativamente, deve existir a contribuição de outro canal para a população do estado excitado 3ILtrans-stpy. A eficiência do fotoprocesso foi avaliada por meio da substituição dos ligantes NN e/ou L, e a diferença nos valores de Φreal entre os complexos deve estar relacionada principalmente com as distintas eficiências de cruzamento intersistemas. o fotoprocesso altera as propriedades fotofísicas desses complexos. Os isômeros trans apresentam fraca ou nenhuma emissão a 298 K, enquanto os fotoprodutos, fac-[Re(CO)3(NN)(cis-L)]+, apresentam intensa luminescência dominada pelo estado excitado 3MLCTRe→NN, que é sensivel à rigidez do meio. A reatividade fotoquímica dos pentacianoferratos(II) [Fe(CN)5 (NN)]3-, NN= 2aminobenzilamina (aba), 2-aminobenzamida (ab), 2-(dimetilaminometil)-3-hidroxipiridina (dmampy), 2-aminometilpiridina (ampy), 2-aminoetilpiridina (aepy) ou 2-(2metilaminoetil) piridina (maepy), também foi investigada. A irradiação desses complexos resulta na fotossubstituição do CN-, a qual só pode ser detectada quando o ligante possui um segundo grupo coordenante nas proximidades da esfera de coordenação. Os rendimentos quânticos da fotossubstituição são dependentes do comprimento de onda de irradiação (Φ313= 0,13 ± 0,01; Φ334= 0,091 ± 0,001; Φ365= 0,056 ± 0,002; Φ404= 0,022 ± 0,002; Φ436= 0,015 ± 0,001, por exemplo, para NN = aba) e indicam a existência de canais distintos pelos quais a fotorreação ocorre ou as diferentes eficiências de cruzamento intersistema para a população do estado excitado reativo. A eficiência do fotoprocesso também depende do Iigante utilizado (λirr= 365 nm: Φaba= 0,056, Φab= 0,14, Φampy= 0,046, Φaepy= 0,066, Φmaepy= 0,069 e Φdmampy= 0,12). Na série das diaminas, o rendimento quântico é maior para [Fe(CN)5(ab)]3-, que possui dois sítios para ocorrer o fechamento do anel. Na série das aminopiridinas, observa-se a influência do comprimento da cadeia na eficiência do fechamento do anel. A presença de metilas ligadas ao nitrogênio alifático deve ter pouca ou nenhuma influência na eficiência do fotoprocesso.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Melanomagenesis is influenced by environmental and genetic factors. In normal cells, ultraviolet (UV) induced photoproducts are successfully repaired by the nucleotide excision repair (NER) pathway. Mice carrying mutations in the xeroderma pigmentosum (Xp) complementation group of genes (Xpa-Xpg) lack the NER pathway and are therefore highly sensitive to UV light; however, they do not develop melanoma after UV exposure. In humans, the Endothelin 3 signaling pathway has been linked to melanoma progression and its metastatic potential. Transgenic mice that over-express Edn3 under the control of the Keratin 5 promoter (K5-Edn3) and exhibit a hyperpigmentation phenotype, were crossed with Xp deficient mice. Because melanoma is highly metastatic and many primary malignancies spread via the lymphatic system, analyzing the lymph nodes may serve useful in assessing the possible spread of tumor cells to other tissues. This study aimed to determine whether the over-expression of Edn3 is sufficient to lead to melanoma metastasis to the lymph nodes. Mice were exposed to UV radiation and analyzed for the presence of skin lesions. Mice presenting skin lesions were sacrificed and the nearest lymph nodes were excised and examined for the presence of metastasis. Mice with melanoma skin lesions presented enlarged and hyperpigmented lymph nodes. Diagnosis of melanoma was established by immunostaining with melanocyte and melanoma cell markers, and while UV radiation caused the development of skin lesions in both K5-Edn3 transgenic and control mice, only those mice carrying the K5-Edn3 transgene were found to develop melanoma metastasis to the lymph nodes. These results indicate that over-expression of Edn3 is sufficient to lead to lymph node metastasis in mice exposed to at least one dose of UV radiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Melanoma is one of the most aggressive types of cancer. It originates from the transformation of melanocytes present in the epidermal/dermal junction of the human skin. It is commonly accepted that melanomagenesis is influenced by the interaction of environmental factors, genetic factors, as well as tumor-host interactions. DNA photoproducts induced by UV radiation are, in normal cells, repaired by the nucleotide excision repair (NER) pathway. The prominent role of NER in cancer resistance is well exemplified by patients with Xeroderma Pigmentosum (XP). This disease results from mutations in the components of the NER pathway, such as XPA and XPC proteins. In humans, NER pathway disruption leads to the development of skin cancers, including melanoma. Similar to humans afflicted with XP, Xpa and Xpc deficient mice show high sensibility to UV light, leading to skin cancer development, except melanoma. The Endothelin 3 (Edn3) signaling pathway is essential for proliferation, survival and migration of melanocyte precursor cells. Excessive production of Edn3 leads to the accumulation of large numbers of melanocytes in the mouse skin, where they are not normally found. In humans, Edn3 signaling pathway has also been implicated in melanoma progression and its metastatic potential. The goal of this study was the development of the first UV-induced melanoma mouse model dependent on the over-expression of Edn3 in the skin. The UV-induced melanoma mouse model reported here is distinguishable from all previous published models by two features: melanocytes are not transformed a priori and melanomagenesis arises only upon neonatal UV exposure. In this model, melanomagenesis depends on the presence of Edn3 in the skin. Disruption of the NER pathway due to the lack of Xpa or Xpc proteins was not essential for melanomagenesis; however, it enhanced melanoma penetrance and decreased melanoma latency after one single neonatal erythemal UV dose. Exposure to a second dose of UV at six weeks of age did not change time of appearance or penetrance of melanomas in this mouse model. Thus, a combination of neonatal UV exposure with excessive Edn3 in the tumor microenvironment is sufficient for melanomagenesis in mice; furthermore, NER deficiency exacerbates this process.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Melanoma is one of the most aggressive types of cancer. It originates from the transformation of melanocytes present in the epidermal/dermal junction of the human skin. It is commonly accepted that melanomagenesis is influenced by the interaction of environmental factors, genetic factors, as well as tumor-host interactions. DNA photoproducts induced by UV radiation are, in normal cells, repaired by the nucleotide excision repair (NER) pathway. The prominent role of NER in cancer resistance is well exemplified by patients with Xeroderma Pigmentosum (XP). This disease results from mutations in the components of the NER pathway, such as XPA and XPC proteins. In humans, NER pathway disruption leads to the development of skin cancers, including melanoma. Similar to humans afflicted with XP, Xpa and Xpc deficient mice show high sensibility to UV light, leading to skin cancer development, except melanoma. The Endothelin 3 (Edn3) signaling pathway is essential for proliferation, survival and migration of melanocyte precursor cells. Excessive production of Edn3 leads to the accumulation of large numbers of melanocytes in the mouse skin, where they are not normally found. In humans, Edn3 signaling pathway has also been implicated in melanoma progression and its metastatic potential. The goal of this study was the development of the first UV-induced melanoma mouse model dependent on the over-expression of Edn3 in the skin. The UV-induced melanoma mouse model reported here is distinguishable from all previous published models by two features: melanocytes are not transformed a priori and melanomagenesis arises only upon neonatal UV exposure. In this model, melanomagenesis depends on the presence of Edn3 in the skin. Disruption of the NER pathway due to the lack of Xpa or Xpc proteins was not essential for melanomagenesis; however, it enhanced melanoma penetrance and decreased melanoma latency after one single neonatal erythemal UV dose. Exposure to a second dose of UV at six weeks of age did not change time of appearance or penetrance of melanomas in this mouse model. Thus, a combination of neonatal UV exposure with excessive Edn3 in the tumor microenvironment is sufficient for melanomagenesis in mice; furthermore, NER deficiency exacerbates this process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé : Les télomères sont des structures nucléoprotéiques spécialisées qui assurent la stabilité du génome en protégeant les extrémités chromosomiques. Afin d’empêcher des activités indésirables, la réparation des dommages à l’ADN doit être convenablement régulée au niveau des télomères. Pourtant, il existe peu d’études de la réparation des dommages induits par les ultraviolets (UVs) dans un contexte télomérique. Le mécanisme de réparation par excision de nucléotides (NER pour « Nucleotide Excision Repair ») permet d’éliminer les photoproduits. La NER est un mécanisme très bien conservé de la levure à l’humain. Elle est divisée en deux sous voies : une réparation globale du génome (GG-NER) et une réparation couplée à la transcription (TC-NER) plus rapide et plus efficace. Dans notre modèle d’étude, la levure Saccharomyces cerevisiae, une forme compactée de la chromatine nommée plus fréquemment « hétérochromatine » a été décrite. Cette structure particulière est présente entre autres, au niveau des régions sous-télomériques des extrémités chromosomiques. La formation de cette chromatine particulière implique quatre protéines nommées Sir (« Silent Information Regulator »). Elle présente différentes marques épigénétiques dont l’effet est de réprimer la transcription. L’accès aux dommages par la machinerie de réparation est-il limité par cette chromatine compacte ? Nous avons donc étudié la réparation des lésions induites par les UVs dans différentes régions associées aux télomères, en absence ou en présence de protéines Sir. Nos données ont démontré une modulation de la NER par la chromatine, dépendante des nucléosomes stabilisés par les Sir, dans les régions sous-télomériques. La NER était moins efficace dans les extrémités chromosomiques que dans les régions plus proches du centromère. Cet effet était dépendant du complexe YKu de la coiffe télomérique, mais pas dépendant des protéines Sir. La transcription télomériques pourrait aider la réparation des photoproduits, par l’intermédiaire de la sous-voie de TC-NER, prévenant ainsi la formation de mutations dans les extrémités chromosomiques. Des ARN non codants nommés TERRA sont produits mais leur rôle n’est pas encore clair. Par nos analyses, nous avons confirmé que la transcription des TERRA faciliterait la NER dans les différentes régions sous-télomériques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese dout. em Química, Unidade de Ciências Exactas e Humanas, Univ. do Algarve, 1997

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dissipation or triadimefon, as pure solid and in the Bayleton 5 commercial formulation, was studied under controlled and natural conditions. Volatilization and photodegradation were shown to be the main dissipation processes. The volatilization results can be described by an empirical model assuming exponential decay of the volatilization rate. The filler of the commercial formulation is determinant for the volatilization but has little effect on the photodegradation rates. The main photoproducts were identified and a reaction mechanism proposed. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ground-state diffuse reflectance, time resolved laser-induced luminescence, diffuse reflectance laser flash-photolysis transient absorption and chromatographic techniques were used to elucidate the photodegradation processes of pyrene adsorbed onto microcrystalline cellulose and silica. Ground-state diffuse reflectance showed that on both substrates low concentrations display absorption of pyrene monomers. At high concentrations spectral changes attributed to aggregate formation were observed. Laser induced fluorescence showed that pyrene onto microcrystalline cellulose mainly presents fluorescence from monomers, while for silica, excimer-like emission was observed from low surface loadings (greater than or equal to 0.5 mumol g(-1)). Transient absorption and photodegradation studies were performed at concentrations where mainly monomers exist. On silica, pyrene presents transient absorption from its radical cation. On microcrystalline cellulose both radical cation, radical anion and pyrene triplet-triplet absorption were detected. Irradiation followed by chromatographic analysis showed that pyrene decomposes on both substrates. For pyrene on microcrystalline cellulose 1-hydroxypyrene was the main identified photoproduct since in the absence of oxygen further oxidation of 1-hydroxypyrene was very slow. For pyrene on silica photodegradation was very efficient. Almost no 1-hydroxypyrene was detected since in the presence of oxygen it is quickly oxidized to other photooxidation products. On both substrates, pyrene radical cation is the intermediate leading to photoproducts and oxygen it is not involved in its formation.