92 resultados para PHOSPHORS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis contains the author's work in preparing efficient EL phosphors, the details of fabrication of low voltage operated thin film EL (TFEL) devices and DC TFEL devices. Some of the important work presented here are related to the white light emitting ZnS:Cu,Pr,Cl phosphor which can be colour tuned by changing the excitation frequency, observation of energy transfer from Cu/Ag ions to rare earth ions in ZnS:(Cu/Ag), RE,Cl phosphors, development of TFEL device which can be operated below 50V, optimization of the device parameters for long life, high brightness in terms of the active and insulating layer thicknesses, observation of dependence of threshold voltage for the onset of emission on frequency of excitation when a novel dielectric Eu2O3 film was used as insulator and the devices with multicolor emission using ZnS doped with rare earth as active layer. Characterization based on other devices based on ZnS:Sm, ZnS:Pr, ZnS:Dy and their emission characteristics are also illustrated

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Al(2)O(3):Eu(3+)(1%) samples were prepared by combustion, ceramic, and Pechini methods annealed from 400 to 1400 degrees C. XRD patterns indicate that samples heated up to 1000 degrees C present disordered character of activated alumina (gamma-Al(2)O(3)). However, alpha-Al(2)O(3) phase showed high crystallinity and thermostability at 1200-1400 degrees C. The sample characterizations were also carried out by means of infrared spectroscopy (IR), scanning electron microscopy (SEM) and specific surface areas analysis (BET method). Excitation spectra of Al(2)O(3):Eu(3+) samples present broaden bands attributed to defects of Al(2)O(3) matrices and to LMCT state of O -> Eu(3+), however, the narrow bands are assigned to (7)F(0) -> (5)D(J),(5)H(J) and (5)L(J) transitions of Eu(3+) ion. Emission spectra of samples calcined up to 1000 degrees C show broaden bands for (5)D(0) -> (7)F(J) transitions of Eu(3+) ion suggesting that the rare earth ion is in different symmetry sites showed by inhomogeneous line broadening of bands, confirming the predominance of the gamma-alumina phase. For all samples heated from 1200 to 1400 degrees C the spectra exhibit narrow (5)D(0) -> (7)F(J) transitions of Eu(3+) ion indicating the conversion of gamma to alpha-Al(2)O(3) phases, a high intensity narrow peak around 695 nm assigned to R lines of Cr(3+) ion is shown. Al(2)O(3):Eu(3+) heated up to 1100 degrees C presents an increase in the Omega(2) intensity parameter with the increase of temperatures enhancing the covalent character of metal-donor interaction. The disordered structural systems present the highest values of emission quantum efficiencies (eta). CIE coordinates of Al(2)O(3):Eu(3+) are also discussed. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CaYAl(3)O(7):Eu(3+) phosphor was prepared at furnace temperatures as low as 550A degrees C by a solution combustion method. The formation of crystalline CaYAl(3)O(7):Eu(3+) was confirmed by powder X-Ray diffraction pattern. The prepared phosphor was characterized by SEM, FT-IR and photoluminescence techniques. Photoluminescence measurements indicated that emission spectrum is dominated by the red peak located at 618 nm due to the (5)D(0)-(7)F(2) electric dipole transition of Eu(3+) ions. Electron Spin Resonance (ESR) studies were carried out to identify the centres responsible for the thermoluminescence (TL) peaks. Room temperature ESR spectrum of irradiated phosphor appears to be a superposition of two distinct centres. One of the centres (centre I) with principal g-value 2.0126 is identified as an O(-) ion while centre II with an isotropic g-factor 2.0060 is assigned to an F(+) centre (singly ionized oxygen vacancy). An additional defect centre is observed during thermal annealing experiments and this centre (assigned to F(+) centre) seems to originate from an F centre (oxygen vacancy with two electrons). The F(+) centre appears to correlate with the observed high temperature TL peak in CaYAl(3)O(7):Eu(3+) phosphor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Europium-doped lanthanum aluminate (LaAlO(3)) powder was prepared by using a combustion method. The crystallization, surface morphology, specific surface area and luminescence properties of the samples have been investigated. Photoluminescence studies of Eu doped LaAlO(3) showed orange-reddish emission due to Eu(3+) ions. LaAlO(3):Eu(3+) exhibits one thermally stimulated luminescence (TSL) peak around 400 degrees C. Room temperature electron spin resonance spectrum of irradiated phosphor appears to be a superposition of two centres. One of them (centre I) with principal g-value 2.017 is identified as an O(-) centre while centre II with an isotropic g-value 2.011 is assigned to an F(+) centre (singly ionized oxygen vacancy). An additional defect centre observed during thermal annealing around 300 degrees C grows with the annealing temperature. This centre (assigned to F(+) centre) originates from an F-centre (oxygen vacancy with two electrons) and the F-centre along with the associated F(+) centre appear to correlate with the observed TSL peak in LaAlO(3):Eu(3+) phosphor. The activation energy for this peak has been determined to be 1.54 eV from TSL data. (C) 2010 Elsevier Masson SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An efficient reddish orange emission MgSrAl(10)O(17):Sm(3+) phosphor was prepared by the combustion method. The phosphor has been characterized by X-ray diffraction, scanning electron microscopy, thermogravimetric analysis measurements. Photoluminescence spectrum revealed that samarium ions are present in trivalent oxidation states. The phosphor exhibits two thermally stimulated luminescence (TSL) peaks at 210 degrees C and 450 degrees C. Electron spin resonance studies were carried out to identify the defect centres responsible for the TSL process in MgSrAl(10)O(17):Sm(3+) phosphor. Three defect centres have been identified in irradiated phosphor and these centres are tentatively assigned to an O(-) ion and F(+) centres. O(-) ion (hole centre) correlates with the 210 degrees C TSL peak while one of the F+ centres (electron centre) appears to relate to the 450 degrees C TSL peak. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Er and Yb co-doped ZnAl(2)O(4) phosphors were prepared by solution combustion synthesis and the identification of Er and Yb were done by energy-dispersive X-ray analysis (EDX) studies. A luminescence at 1.5 mu m, due to the (4)I(13/2) ->(4)I(15/2) transition, has been studied in the NIR region in Er and Yb co-doped ZnAl(2)O(4) phosphors upon 980 nm CW pumping. Er-doped ZnAl(2)O(4) exhibits two thermally stimulated luminescence (TSL) peaks around 174A degrees C and 483A degrees C, while Yb co-doped ZnAl(2)O(4) exhibits TSL peaks around 170A degrees C and 423A degrees C. Electron spin resonance (ESR) studies were carried out to identify defect centres responsible for TSL peaks observed in the phosphors. Room temperature ESR spectrum appears to be a superposition of two distinct centres. These centres are assigned to an O(-) ion and F(+) centre. O(-) ion appears to correlate with the 174A degrees C TSL peak and F(+) centre appears to relate with the high temperature TSL peak at 483A degrees C in ZnAl(2)O(4):Er phosphor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phase formation kinetics of YAP (YAlO(3)) synthesized through the polymeric precursor method was investigated by thermal analysis, X-ray diffraction and FT-IR spectroscopy. We demonstrated that the YAP synthesis is highly dependent on the heat and mass transport during all stages of the synthesis route. In the first stages, during the preparation of amorphous precursor, ""hot spots"" need to be suppressed to avoid the occurrence of chemical inhomogeneities. Very high heating rates combined with small amorphous particles are advantageous in the last stage during the formation of crystalline phase. We were able to synthesize nanosized particles of YAP single phase at temperatures around 1100 A degrees C for future preparation of phosphors or ceramics for optics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polycrystalline Eu(2+) and Dy(3+) doped barium aluminate materials, BaAl(2)O(4):Eu(2+),Dy(3+), were prepared with solid state reactions at temperatures between 700 and 1500 degrees C. The influence of the thermal treatments on the stability, homogeneity and structure as well as to the UV-excited and persistent luminescence of the materials was investigated by X-ray powder diffraction, SEM imaging and infrared spectroscopies as well as by steady state luminescence spectroscopy and persistent luminescence decay curves, respectively. The IR spectra of the materials prepared at 250, 700, and 1500 degrees C follow the formation of BaAl(2)O(4) composition whereas the X-ray powder diffraction of compounds revealed how the hexagonal structure was obtained. The morphology of the materials at high temperatures indicated important aggregation due to sintering. The luminescence decay of the quite narrow Eu(2+) band at ca. 500 nm shows the presence of persistent luminescence after UV irradiation. The dopant (Eu(2+)) and co-clopant (Dy(3+)) concentrations affect the crystallinity and luminescence properties of the materials. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MgAl(2)O(4):Eu, Dy nanoparticles were prepared by citrate sol-gel method and thermally treated at 600, 700, 800 and 900 degrees C. The trivalent europium ion is partially reduced to the divalent state at 700 and 800 degrees C. Infrared spectra of the phosphors showed bands around 700 and 520 cm(-1) corresponding to the AlO(6) groups. X-ray diffraction patterns present sharp reflections of samples heated from 700 to 900 degrees C indicating the MgAl(2)O(4) spinel phase. Grain size in the range 20-30 nm were observed by measurement of transmission electron microscopy (TEM). The emission spectra of the phosphors show a broadened band at 480 nm assigned to the 4f(G)5d -> 4f(7) ((8)S(7/2)) transition of Eu(2+) ion overlapped to the (4)F(9/2) -> (6)H(15/2) transition of the Dy(3+) ion. Besides, the (4)F(9/2) -> (6)H(13/2) transition (579 nm) of Dy(3+) ion is overlapped with the (5)D(0) -> (7)F(0) (578 nm) and (5)D(0) -> (7)F(1) (595 nm) transitions from the Eu(3+) ion. Excitation spectra of the sample heated at 900 degrees C monitoring the excitation at 615 nm of (5)D(0) -> (7)F(2) transition of Eu(3+) ion exhibit a broad band assigned to the O -> Eu(3+) ligand-to-metal charge-transfer states (LMCT) around 280 nm. The samples present green persistent luminescence after exposure to UV radiation. The chromaticity coordinates were obtained from the luminescence emission spectrum. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work reports on the preparation, structural and luminescent studies of nanosized up-converter phosphors Y2O2S:Yb(4%), Er(0.1%) and Y2O2S:Yb(4%), Tm(0.1%),both from polymeric and basic carbonate precursors. The precursors were submitted to a sulphuration process that was previously developed for oxysulfide preparation from basic carbonate. From XRD data, all phosphors presented the oxysulfide phase and the mean crystallite size estimated from the Scherrer formula in the range of 15-20 nm. Polymeric precursor leads to the smallest crystallite size independent on the doping ion. SEM and TEM results confirmed that basic carbonate leads to spherical particles with narrow size distribution and mean diameter of 150 nm, and polymeric precursor smaller spherical particles with diameter between 20 and 40 nm. Up-conversion studies under 980 nm laser excitation showed that Er-doped phosphors present strong green emission related to H-2(11/2), S-4(3/2) --> I-4(15/2) Er transitions as well as the red ones, F-4(9/2) --> I-4(15/2). Tm-doped samples show strong blue emission assigned to (1)G(4) --> H-3(6) and also the red ones, related to (1)G(4) --> F-3(4). Therefore, the sulphuration method was successfully applied to prepare nanosized and nanostructured blue and green up-converter oxysulfide phosphors starting from basic carbonate and polymeric precursors. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Yttrium-aluminum oxides are interesting compounds and they have been extensively used as host for lasers and phosphors, due to their stable physical and chemical properties. The fabrication of yttrium-aluminum garnet (YAG) has been investigated thoroughly. Single-crystal YAG is expensive and to produce it a new way has been investigated. This process consists of modifying the methodology of reagents mixture and the process of heating them. The microwave irradiation is used to heat-treat the oxide mixture. The traditional synthesis of YAG powders occurs through the reaction of aluminum and yttrium powders at high temperatures. With this work we investigated the preparation of YAG by non-hydrolytic sol-gel route as an alternative methodology to obtain yttrium-aluminum matrix from inorganic precursors (yttrium and aluminum chloride). The preparation of the gel was carried out in an oven-dried glassware. The AlCl3, YCl3 and ethanol were reacted in reflux under argon atmosphere. Europium III chloride was added as a structural probe. The powder was dried and heat-treated in modified microwaves. The samples were pre-treated at 50 and 800 C during I h and then heated in microwaves for 30 s, 2 and 4 min. The formation process and structure of the powders were studied by means of X-ray diffraction (XRD), photoluminescence (PL) and transmission electronic microscopy (TEM). XRD presents only picks corresponding to the YAG phase and confirmed by TEM. PL date showed that the YAG phase was formed in 2 min with the samples pre-treated at 50 C. For the samples pretreated at 800 degrees C, the YAG phase appears in 30s. The excitation spectra present a maximum of 394 nm corresponding to the L-5(6) level and emission spectra of Eu III ion present bands characteristic transitions arising from the D-5(0) -> F-7(J) (J= 1, 2, 3, 4) monifolds excited at their maximum. The magnetic dipole D-5(0) -> F-7(1) transition presents more intensity than the electric dipole D-5(0) -> F-7(2) transition. This methodology showed efficiency in obtaining YAG phase. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work is to report on the luminescence properties of BaZnSiO4 activated by Eu3+ and Mn2+ ions. Doped and undoped powder samples were prepared by solid-state reaction starting from oxides and carbonates or Ba2SiO4:Eu3+ and Zn2SiO4:Mn2+ precursors. X-ray diffraction powder data, IR vibrational, and UV-vis luminescence spectroscopies were carried out. Results showed that doped and undoped samples from both types of precursors have the same structure and crystallize with a superstructure of hexagonal kalsilite. Vibrational spectroscopy has confirmed the formation of a silicate group, which outlines differences between products and silicate precursors. The observed luminescence assigned to Eu3+ and Mn2+ transitions covered most parts of the visible spectrum, an important requirement for phosphors in fluorescent low-pressure mercury vapor lamps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of binary diphenylphosphinates with Eu3+ and Gd3+ were prepared. The compounds have the general formula Gd1-xEux(DPP)(3), where x ranges from 0 to 1. The spectroscopic measurements show interesting behavior. The intensity of the D-5(0) --> F-7(2) transitions decreases relative to D-5(0) --> F-7(1) With an increase in europium dispersion. Inside the temporal domain, the same decrease is observed with increasing delay after excitation. The lifetimes are also affected, which can be seen in the x = 1 compound, where the decay is a first-order process and lifetime values are 4.81 ms. In the binary compound, as an effect of dispersion, the lifetime of the D-5(0) level measured at the D-5(0) --> F-7(1) transition increases with europium dispersion, and the average along the series is 6.25 ms. The decay measured at the D-5(0) --> F-7(2) transitions reveals a second-order process with lifetimes ranging from 1.90 to 6.00 ms. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)