784 resultados para PHOSPHOLIPID-BILAYERS
Resumo:
The study of proton conductance across artificial membranes has revealed a surprisingly high permeability for H+, (Pnet H+). A high Pnet H+ is difficult to reconcile with the biological requirement for the maintenance of pH gradients across the plasma membranes of cells, organellar study was undertaken to examine the role played by cholesterol and phospholipid fatty acid side chain composition in determining how well a membrane will function as a barrier to acid. The effects of counter-ion movement on acidification rates were examined in order to interpret the data obtained from variations in membrane composition. In phosphate buffered saline solutions, vesicle membranes composed of unsaturated fatty acid phosphatidylcholines proved to be poorer barriers to acid than membranes composed of saturated fatty acids. The barrier properties of these membranes could be ranked in the following order: DPL, (palmitic) $>$ Egg PC, (mixed chains) $>$ DLL, (linoleic), with DPL being the most effective in maintaining a one pH unit gradient near neutrality. Cholesterol decreased acidification rates of membranes made from the unsaturated phosphatidylcholines Egg PC and DLL, but enhanced acidification rates in vesicle membranes composed of the saturated phospholipid DPL. The cholesterol and fatty acid side chain effects were mediated by changes in membrane fluidity, with more rigid bilayers forming better barriers to acid. Experimental evidence was obtained which confirmed the Pnet H+ is very high relative to the permeabilities of other ions. Counter-ion controlled acidification rates depended on the size and charge of the ion which was moving in order to maintain electroneutrality. The biological relevance of a high intrinsic Pnet H+ and the possible role of counter-ion controlled acidification were discussed. ^
Resumo:
A protease-resistant core domain of the neuronal SNARE complex consists of an α-helical bundle similar to the proposed fusogenic core of viral fusion proteins [Skehel, J. J. & Wiley, D. C. (1998) Cell 95, 871–874]. We find that the isolated core of a SNARE complex efficiently fuses artificial bilayers and does so faster than full length SNAREs. Unexpectedly, a dramatic increase in speed results from removal of the N-terminal domain of the t-SNARE syntaxin, which does not affect the rate of assembly of v-t SNARES. In the absence of this negative regulatory domain, the half-time for fusion of an entire population of lipid vesicles by isolated SNARE cores (≈10 min) is compatible with the kinetics of fusion in many cell types.
Resumo:
We report on spectroscopic studies of the chiral structure in phospholipid tubules formed in mixtures of alcohol and water. Synthetic phospholipids containing diacetylenic moieties in the acyl chains self-assemble into hollow, cylindrical tubules in appropriate conditions. Circular dichroism provides a direct measure of chirality of the molecular structure. We find that the CD spectra of tubules formed in mixtures of alcohol and water depends strongly on the alcohol used and the lipid concentration. The relative spectral intensity of different circular dichroism bands correlates with the number of bilayers observed using microscopy. The results provide experimental evidence that tubule formation is based on chiral packing of the lipid molecules and that interbilayer interactions are important to the tubule structure.
Resumo:
The mammalian phosphatidylinositol/phosphatidylcholine transfer proteins (PI-TPs) catalyze exchange of phosphatidylinositol (PI) or phosphatidylcholine (PC) between membrane bilayers in vitro. We find that Ser-25, Thr-59, Pro-78, and Glu-248 make up a set of rat (r) PI-TP residues, substitution of which effected a dramatic reduction in the relative specific activity for PI transfer activity without significant effect on PC transfer activity. Thr-59 was of particular interest as it is a conserved residue in a highly conserved consensus protein kinase C phosphorylation motif in metazoan PI-TPs. Replacement of Thr-59 with Ser, Gln, Val, Ile, Asn, Asp, or Glu effectively abolished PI transfer capability but was essentially silent with respect to PC transfer activity. These findings identify rPI-TP residues that likely cooperate to form a PI head-group binding/recognition site or that lie adjacent to such a site. Finally, the selective sensitivity of the PI transfer activity of rPI-TP to alteration of Thr-59 suggests a mechanism for in vivo regulation of rPI-TP activity.
Resumo:
In this work, we report a 20-ns constant pressure molecular dynamics simulation of prilocaine (PLC), in amine-amide local anesthetic, in a hydrated liquid crystal bilayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine. The partition of PLC induces the lateral expansion of the bilayer and a concomitant contraction in its thickness. PLC molecules are preferentially found in the hydrophobic acyl chains region, with a maximum probability at similar to 12 angstrom from the center of the bilayer (between the C(4) and C(5) methylene groups). A decrease in the acyl chain segmental order parameter, vertical bar S-CD vertical bar, compared to neat bilayers, is found, in good agreement with experimental H-2-NMR studies. The decrease in vertical bar S-CD vertical bar induced by PLC is attributed to a larger accessible volume per lipid in the acyl chain region. (C) 2008 Wiley Periodicals, Inc.
Resumo:
Background: Cationic bilayers based on the inexpensive synthetic lipid dioctadecyldimethylammonium bromide (DODAB) have been useful as carriers for drug delivery, immunoadjuvants for vaccines and active antimicrobial agents. Methods: Rifampicin (RIF) or isoniazid (ISO) interacted with DODAB bilayer fragments (BF) or large vesicles (LV). Dispersions were evaluated by dynamic light-scattering for zeta-average diameter (Dz) and zeta-potential (zeta) analysis; dialysis for determination of drug entrapment efficiency; plating and CFU counting for determination of cell viability of Mycobacterium smegmatis or tuberculosis, minimal bactericidal concentration (MBC) and synergism index for DODAB/drug combinations. Results: DODAB alone killed micobacteria over a range of micromolar concentrations. RIF aggregates in water solution were solubilised by DODAB BF. RIF was incorporated in DODAB bilayers at high percentiles in contrast to the leaky behavior of ISO. Combination DODAB/RIF yielded MBCs of 2/2 and 4/0.007 mu g/mL against Mycobacterium smegmatis or Mycobacterium tuberculosis, respectively. Synergism indexes equal to 0.5 or 1.0, indicated synergism against the former and independent action, against the latter species. Conclusions: In vitro, DODAB acted effectively both as micobactericidal agent and carrier for rifampicin. The novel assemblies at reduced doses may become valuable against tuberculosis.
Resumo:
Background: Silica particles cationized by dioctadecyldimethylammonium bromide (DODAB) bilayer were previously described. This work shows the efficiency of these particulates for antigen adsorption and presentation to the immune system and proves the concept that silica-based cationic bilayers exhibit better performance than alum regarding colloid stability and cellular immune responses for vaccine design. Results: Firstly, the silica/DODAB assembly was characterized at 1 mM NaCl, pH 6.3 or 5 mM Tris. HCl, pH 7.4 and 0.1 mg/ml silica over a range of DODAB concentrations (0.001-1 mM) by means of dynamic light scattering for particle sizing and zeta-potential analysis. 0.05 mM DODAB is enough to produce cationic bilayer-covered particles with good colloid stability. Secondly, conditions for maximal adsorption of bovine serum albumin (BSA) or a recombinant, heat-shock protein from Mycobacterium leprae (18 kDa-hsp) onto DODAB-covered or onto bare silica were determined. At maximal antigen adsorption, cellular immune responses in vivo from delayed-type hypersensitivity reactions determined by foot-pad swelling tests (DTH) and cytokines analysis evidenced the superior performance of the silica/DODAB adjuvant as compared to alum or antigens alone whereas humoral response from IgG in serum was equal to the one elicited by alum as adjuvant. Conclusion: Cationized silica is a biocompatible, inexpensive, easily prepared and possibly general immunoadjuvant for antigen presentation which displays higher colloid stability than alum, better performance regarding cellular immune responses and employs very low, micromolar doses of cationic and toxic synthetic lipid.
Resumo:
We observe zero-differential resistance states at low temperatures and moderate direct currents in a bilayer electron system formed by a wide quantum well. Several regions of vanishing resistance evolve from the inverted peaks of magneto-intersubband oscillations as the current increases. The experiment, supported by a theoretical analysis, suggests that the origin of this phenomenon is based on instability of homogeneous current flow under conditions of negative differential resistivity, which leads to formation of current domains in our sample, similar to the case of single-layer systems.
Resumo:
The combination of metallic phthalocyanines (MPcs) and biomolecules has been explored in the literature either as mimetic systems to investigate molecular interactions or as supporting layers to immobilize biomolecules. Here, Langmuir-Blodgett (LB) films containing the phospholipid dimyristoyl phosphatidic acid (DMPA) mixed either with iron phthalocyanine (FePc) or with lutetium bisphthalocyanine (LuPc(2)) were applied as ITO modified-electrodes in the detection of catechol using cyclic voltammetry. The mixed Langmuir films of FePc + DMPA and LuPc(2) + DMPA displayed surface-pressure isotherms with no evidence of molecular-level interactions. The Fourier Transform Infrared (FTIR) spectra of the multilayer LB films confirmed the lack of interaction between the components. The DMPA and the FePc molecules were found to be oriented perpendicularly to the substrate, while LuPc(2) molecules were randomly organized. The phospholipid matrix induced a remarkable electrocatalytic effect on the phthalocyanines; as a result the mixed LB films deposited on ITO could be used to detect catechol with detection limits of 4.30 x 10(-7) and 3.34 x 10(-7) M for FePc + DMPA and LuPc(2) + DMPA, respectively. Results from kinetics experiments revealed that ion diffusion dominated the response of the modified electrodes. The sensitivity was comparable to that of other non-enzymatic sensors, which is sufficient to detect catechol in the food industry. The higher stability of the electrochemical response of the LB films and the ability to control the molecular architecture are promising for further studies with incorporation of biomolecules.
Resumo:
We have synthesized the amphiphile photosensitizer PE-porph consisting of a porphyrin bound to a lipid head-group. We studied by optical microscopy the response to light irradiation of giant unilamellar vesicles of mixtures of unsaturated phosphatidylcholine lipids and PE-porph. In this configuration, singlet oxygen is produced at the bilayer surface by the anchored porphyrin. Under irradiation, the PE-porph decorated giant unilamellar vesicles exhibit a rapid increase in surface area with concomitant morphological changes. We quantify the surface area increase of the bilayers as a function of time and photosensitizer molar fraction. We attribute this expansion to hydroperoxide formation by the reaction of the singlet oxygen with the unsaturated bonds. Considering data from numeric simulations of relative area increase per phospholipid oxidized (15%), we measure the efficiency of the oxidative reactions. We conclude that for every 270 singlet oxygen molecules produced by the layer of anchored porphyrins, one eventually reacts to generate a hydroperoxide species. Remarkably, the integrity of the membrane is preserved in the full experimental range explored here, up to a hydroperoxide content of 60%, inducing an 8% relative area expansion.
Resumo:
The phospholipids in plasma membranes of erythrocytes, as well as platelets, lymphocytes and other cells are asymmetrically distributed, with sphingomyelin and phosphatidylcholine residing predominantly in the outer leaflet of the bilayer, and phosphatidylserine and phosphatidylethanolamine in the inner leaflet. It is known that Ca2+ can disrupt the phospholipid asymmetry by activation of a protein known as phospholipid scramblase, which affects bidirectional phospholipid movement in a largely non-selective manner. As Ca2+ also inhibits aminophospholipid translocase, whose Mg2+-ATPase activity is responsible for active translocation of aminophospholipids from the outer to the inner leaflet, it is important to accurately determine the sensitivity of scramblase to intracellular free Ca2+. In the present study we have utilized the favourable K-d, of Mag-fura-2 for calcium in the high micromolar range to determine free Ca2+ levels associated with lipid scrambling in resealed human red cell ghosts. The Ca2+ sensitivity was measured in parallel to the translocation of a fluorescent-labelled lipid incorporated into the ghost bilayer. The phospholipid scrambling was found to be half-maximally activated at 63-88 mu M free intracellular Ca2+. The wider applicability of the method and the physiological implications of the calcium sensitivity determined is discussed.
Resumo:
In this work we report the interaction effects of the local anesthetic dibucaine (DBC) with lipid patches in model membranes by Atomic Force Microscopy (AFM). Supported lipid bilayers (egg phosphatidylcholine, EPC and dimyristoylphosphatidylcholine, DMPQ were prepared by fusion of unilamellar vesicles on mica and imaged in aqueous media. The AFM images show irregularly distributed and sized EPC patches on mica. On the other hand DMPC formation presents extensive bilayer regions on top of which multibilayer patches are formed. In the presence of DBC we observed a progressive disruption of these patches, but for DMPC bilayers this process occurred more slowly than for EPC. In both cases, phase images show the formation of small structures on the bilayer surface suggesting an effect on the elastic properties of the bilayers when DBC is present. Dynamic surface tension and dilatational surface elasticity measurements of EPC and DMPC monolayers in the presence of DBC by the pendant drop technique were also performed, in order to elucidate these results. The curve of lipid monolayer elasticity versus DBC concentration, for both EPC and DMPC cases, shows a maximum for the surface elasticity modulus at the same concentration where we observed the disruption of the bilayer by AFM. Our results suggest that changes in the local curvature of the bilayer induced by DBC could explain the anesthetic action in membranes. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A glycosylphosphatidylinositol (GPI)-anchored enzyme (rat osseous plate alkaline phosphatase-OAP) was studied as monolayer (pure and mixed with lipids) at the air-water interface. Surface pressure and surface potential-area isotherms showed that the enzyme forms a stable monolayer and exhibits a liquid-expanded state even at surface pressure as high as 30 mN m(-1). Isotherms for mixed dimyristoylphosphatidic acid (DMPA)-OAP monolayer showed the absence of a liquid-expanded/liquid-condensed phase transition as observed for pure DMPA monolayer. In both cases, pure or mixed monolayer, the enzyme preserves its native conformation under compression at the air-water interface as observed from in situ p-polarized light Fourier transform-infrared reflection-absorption spectroscopic (FT-IRRAS) measurements. Changes in orientation and conformation of the enzyme due to the presence or absence of DMPA, as well as due to the surface compression, are discussed. (C) 2008 Published by Elsevier Inc.
Resumo:
This article addresses the interactions of the synthetic antimicrobial peptide dermaseptin 01 (GLWSTIKQKGKEAAIAAA-KAAGQAALGAL-NH(2), DS 01) with phospholipid (PL) monolayers comprising (i) a lipid-rich extract of Leishmania amazonensis (LRE-La), (ii) zwitterionic PL (dipalmitoylphosphatidylcholine, DPPC), and (iii) negatively charged PL (dipalmitoylphosphatidylglycerol, DPPG). The degree of interaction of DS 01 with the different biomembrane models was quantified from equilibrium and dynamic liquid-air interface parameters. At low peptide concentrations, interactions between DS 01 and zwitterionic PL, as well as with the LRE-La monolayers were very weak, whereas with negatively charged PLs the interactions were stronger. For peptide concentrations above 1 mu g/ml, a considerable expansion of negatively charged monolayers occurred. In the case of DPPC, it was possible to return to the original lipid area in the condensed phase, suggesting that the peptide was expelled from the monolayer. However, in the case of DPPG, the average area per lipid molecule in the presence of DS 01 was higher than pure PLs even at high surface pressures, suggesting that at least part of DS 01 remained incorporated in the monolayer. For the LRE-La monolayers, DS 01 also remained in the monolayer. This is the first report on the antiparasitic activity of AMPs using Langmuir monolayers of a natural lipid extract from L. amazonensis. Copyright (C) 2011 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
The interaction between a hydrophobically modified 5,10,15,20-tetrakis(4-N-tetradecyl-pyridyl) porphyrin and three phospholipids: two negatively charged, DMPA (the sodium salt of dimyristoyl-sn-glycero-phosphatidyl acid) and DMPG (the sodium salt of 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]) and a zwitterionic DMPC (dimyristoyl-sn-glycero-phosphatidylcholine), were studied by means of surface pressure isotherms and spectroscopic methods. The interaction results in partial or total metallation of the porphyrin with zinc ions in the presence of negatively charged phospholipids, as attested by UV-vis and luminescence spectroscopy of the transferred films. In the presence of the zwitterionic phospholipid no insertion of zinc ion in the porphyrin ring is detected. These results are relevant for the understanding of photosensitizer-lipid-carrier binding for use in photodynamic therapy. (C) 2010 Elsevier Inc. All rights reserved.