990 resultados para PHASE DIAGRAM
Resumo:
The mercury-indium phase diagram has been investigated over the whole composition range from -78°C to the melting point of indium, using thermal analysis, X-ray and superconductivity techniques. This is believed to be the first application of superconductivity measurements to phase diagram investigations. A compound, HgIn, of very limited range of composition, melts congruently at -19.3°C; and gives rise to eutectics at 61.5 at. % indium and -31°C, and at 34.7% indium and -37.2°C. The β phase extends from 2.5 to 19.1 % indium and has a maximum melting point of -14.2°C at 14.2% indium. It forms a peritectic or eutectic at a temperature indistinguishable from the melting point of pure mercury with a solid solution in mercury containing some, but less than 0.3%, indium. A transition from face-centred tetragonal to face-centred cubic in the indium-rich solid solutions at about 93% indium gives rise to a peritectic at 108°C. The solubility of mercury in this face-centred cubic phase falls from about 22% at-31°C to 13% at -78°C. © 1963.
Resumo:
We consider a simple Maier-Saupe statistical model with the inclusion of disorder degrees of freedom to mimic the phase diagram of a mixture of rodlike and disklike molecules. A quenched distribution of shapes leads to a phase diagram with two uniaxial and a biaxial nematic structure. A thermalized distribution, however, which is more adequate to liquid mixtures, precludes the stability of this biaxial phase. We then use a two-temperature formalism, and assume a separation of relaxation times, to show that a partial degree of annealing is already sufficient to stabilize a biaxial nematic structure.
Resumo:
Solid-liquid phase equilibrium modeling of triacylglycerol mixtures is essential for lipids design. Considering the alpha polymorphism and liquid phase as ideal, the Margules 2-suffix excess Gibbs energy model with predictive binary parameter correlations describes the non ideal beta and beta` solid polymorphs. Solving by direct optimization of the Gibbs free energy enables one to predict from a bulk mixture composition the phases composition at a given temperature and thus the SFC curve, the melting profile and the Differential Scanning Calorimetry (DSC) curve that are related to end-user lipid properties. Phase diagram, SFC and DSC curve experimental data are qualitatively and quantitatively well predicted for the binary mixture 1,3-dipalmitoyl-2-oleoyl-sn-glycerol (POP) and 1,2,3-tripalmitoyl-sn-glycerol (PPP), the ternary mixture 1,3-dimyristoyl-2-palmitoyl-sn-glycerol (MPM), 1,2-distearoyl-3-oleoyl-sn-glycerol (SSO) and 1,2,3-trioleoyl-sn-glycerol (OOO), for palm oil and cocoa butter. Then, addition to palm oil of Medium-Long-Medium type structured lipids is evaluated, using caprylic acid as medium chain and long chain fatty acids (EPA-eicosapentaenoic acid, DHA-docosahexaenoic acid, gamma-linolenic-octadecatrienoic acid and AA-arachidonic acid), as sn-2 substitutes. EPA, DHA and AA increase the melting range on both the fusion and crystallization side. gamma-linolenic shifts the melting range upwards. This predictive tool is useful for the pre-screening of lipids matching desired properties set a priori.
Resumo:
A partial pseudo-ternary phase diagram has been studied for the cethyltrimethylammonium bromide/isooctane:hexanol:butanol/potassium phosphate buffer system, where the two-phase diagram consisting of the reverse micelle phase (L-2) in equilibrium with the solvent is indicated. Based on these diagrams two-phase systems of reverse micelles were prepared with different compositions of the compounds and used for extraction and recovery of two enzymes, and the percentage of enzyme recovery yield monitored. The enzymes glucose-6-phosphate dehydrogenase (G6PD) and xylose redutase (XR) obtained from Candida guilliermondii yeast were used in the extraction procedures. The recovery yield data indicate that micelles having different composition give selective extraction of enzymes. The method can thus be used to optimize enzyme extraction processes. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Emulsions surfer alterations in their microstructure after applied on the skin, because of the interaction with skin constituents and mainly by the evaporation of volatile components. These alterations are not even considered by cosmetic formulators, but they are extremely important because they can act on formulation stability, on delivery and on permeation of actives and also on the ability to build the occlusive film, responsible for skin`s moisturization. This research studied the phase changing during evaporation of emulsions made with three different oil phase: mineral oil, avocado oil, and isocethyl/stearoil stearate, as a function of the decrease on water ratio, using phase diagrams and evaporation test. It was observed the formation of liquid crystalline phases and their transition along the evaporation path for emulsions with the three different oil phases. It was also observed that these transitions occurred in different water ratios.
Resumo:
Equilibrium phase relations in the PbO-Al2O3-SiO2 system have been investigated experimentally by means of high-temperature equilibration, quenching, and electron probe X-ray microanalysis (EPMA). The system has 21 primary phase fields including three monoxides (PbO, Al2O3, and SiO2), seven binary compounds (Al6Si2O13, PbAl2O4, PbAl12O19, Pb2Al2O5, PbSiO3, Pb2SiO4, and Pb4SiO6), and eleven ternary compounds (PbAl2Si2O8, Pb3Al10SiO20, Pb4Al2Si2O11, Pb4Al4SiO12, Pb4Al4Si3O16, Pb4Al4Si5O20, Pb5Al2Si10O28, Pb6Al2Si6O21, Pb8Al2Si4O19, Pb12Al2Si17O49, and Pb12Al2Si20O55). Three new ternary compounds, Pb4Al4SiO12, Pb4Al4Si5O20, and Pb12Al2Si17O49, were observed and characterized by EPMA. No extensive solid solution in any of the compounds was found in the present study. The liquidus isotherms were experimentally determined in most of the primary phase fields in the temperature range from 923 to 1873 K, and the ternary phase diagram of the PbO-Al2O3-SiO2 System has been constructed.
Resumo:
The principle that alloys are designed to accommodate the manufacture of goods made from them as much as the properties required of them in service has not been widely applied to pressed and sintered P/M aluminium alloys. Most commercial alloys made from mixed elemental blends are identical to standard wrought alloys. Alternatively, alloys can be designed systematically using the phase diagram characteristics of ideal liquid phase sintering systems. This requires consideration of the solubilities of the alloying elements in aluminium, the melting points of the elements, the eutectics they form with aluminium and the nature of the liquid phase. The relative diffusivities are also important. Here we show that Al-Sn, which closely follows these ideal characteristics, has a much stronger sintering response than either Al-Cu or Al-Zn, both of which have at least one non-ideal characteristic. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We use Wertheim's first-order perturbation theory to investigate the phase behaviour and the structure of coexisting fluid phases for a model of patchy particles with dissimilar patches (two patches of type A and f(B) patches of type B). A patch of type alpha = {A, B} can bond to a patch of type beta = {A, B} in a volume nu(alpha beta), thereby decreasing the internal energy by epsilon(alpha beta). We analyse the range of model parameters where AB bonds, or Y-junctions, are energetically disfavoured (epsilon(AB) < epsilon(AA)/2) but entropically favoured (nu(AB) >> nu(alpha alpha)), and BB bonds, or X-junctions, are energetically favoured (epsilon(BB) > 0). We show that, for low values of epsilon(BB)/epsilon(AA), the phase diagram has three different regions: (i) close to the critical temperature a low-density liquid composed of long chains and rich in Y-junctions coexists with a vapour of chains; (ii) at intermediate temperatures there is coexistence between a vapour of short chains and a liquid of very long chains with X-and Y-junctions; (iii) at low temperatures an ideal gas coexists with a high-density liquid with all possible AA and BB bonds formed. It is also shown that in region (i) the liquid binodal is reentrant (its density decreases with decreasing temperature) for the lower values of epsilon(BB)/epsilon(AA). The existence of these three regions is a consequence of the competition between the formation of X- and Y-junctions: X-junctions are energetically favoured and thus dominate at low temperatures, whereas Y-junctions are entropically favoured and dominate at higher temperatures.
Resumo:
We study a model consisting of particles with dissimilar bonding sites ("patches"), which exhibits self-assembly into chains connected by Y-junctions, and investigate its phase behaviour by both simulations and theory. We show that, as the energy cost epsilon(j) of forming Y-junctions increases, the extent of the liquid-vapour coexistence region at lower temperatures and densities is reduced. The phase diagram thus acquires a characteristic "pinched" shape in which the liquid branch density decreases as the temperature is lowered. To our knowledge, this is the first model in which the predicted topological phase transition between a fluid composed of short chains and a fluid rich in Y-junctions is actually observed. Above a certain threshold for epsilon(j), condensation ceases to exist because the entropy gain of forming Y-junctions can no longer offset their energy cost. We also show that the properties of these phase diagrams can be understood in terms of a temperature-dependent effective valence of the patchy particles. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3605703]
Resumo:
We investigate the structural and thermodynamic properties of a model of particles with 2 patches of type A and 10 patches of type B. Particles are placed on the sites of a face centered cubic lattice with the patches oriented along the nearest neighbor directions. The competition between the self- assembly of chains, rings, and networks on the phase diagram is investigated by carrying out a systematic investigation of this class of models, using an extension ofWertheim's theory for associating fluids and Monte Carlo numerical simulations. We varied the ratio r epsilon(AB)/epsilon(AA) of the interaction between patches A and B, epsilon(AB), and between A patches, epsilon(AA) (epsilon(BB) is set to theta) as well as the relative position of the A patches, i.e., the angle. between the (lattice) directions of the A patches. We found that both r and theta (60 degrees, 90 degrees, or 120 degrees) have a profound effect on the phase diagram. In the empty fluid regime (r < 1/2) the phase diagram is reentrant with a closed miscibility loop. The region around the lower critical point exhibits unusual structural and thermodynamic behavior determined by the presence of relatively short rings. The agreement between the results of theory and simulation is excellent for theta = 120 degrees but deteriorates as. decreases, revealing the need for new theoretical approaches to describe the structure and thermodynamics of systems dominated by small rings. (C) 2014 AIP Publishing LLC.
Resumo:
Separator membranes based on poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) were prepared by solvent casting technique based on its phase diagram in N,Ndimethylformamide (DMF) solvent. The microstructure of the PVDF-CTFE separator membranes depends on the initial position (temperature and concentration) of the solution in the phase diagram of the PVDF-CTFE/DMF system. A porous microstructure is achieved for PVDF-CTFE membranes with solvent evaporation temperature up to 50 ºC for a polymer/solvent relative concentration of 20 wt%. The ionic conductivity of the separator depends on the degree of porosity and electrolyte uptake, the highest room temperature value being 1.5 mS.cm-1 for the sample with 20 wt% of polymer concentration and solvent evaporation temperature at 25 ºC saturated with 1 mol L-1 lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) in propylene carbonate (PC). This PVDF-CTFE separator membrane in Li/C-LiFePO4 half-cell shows good cyclability and rate capability, showing a discharge value after 50 cycles of 92 mAh.g-1 at 2 C, which is still 55% of the theoretical value. PVDF-CTFE separators are thus excellent candidates for high-power and safety lithium-ion batteries applications.
Resumo:
We consider systems that can be described in terms of two kinds of degree of freedom. The corresponding ordering modes may, under certain conditions, be coupled to each other. We may thus assume that the primary ordering mode gives rise to a diffusionless first-order phase transition. The change of its thermodynamic properties as a function of the secondary-ordering-mode state is then analyzed. Two specific examples are discussed. First, we study a three-state Potts model in a binary system. Using mean-field techniques, we obtain the phase diagram and different properties of the system as a function of the distribution of atoms on the different lattice sites. In the second case, the properties of a displacive structural phase transition of martensitic type in a binary alloy are studied as a function of atomic order. Because of the directional character of the martensitic-transition mechanism, we find only a very weak dependence of the entropy on atomic order. Experimental results are found to be in quite good agreement with theoretical predictions.
Resumo:
Measurements of the entropy change at the martensitic transition of two composition-related sets of Cu-Al-Mn shape-memory alloys are reported. It is found that most of the entropy change has a vibrational origin, and depends only on the particular close-packed structure of the low-temperature phase. Using data from the literature for other Cu-based alloys, this result is shown to be general. In addition, it is shown that the martensitic structure changes from 18R to 2H when the ratio of conduction electrons per atom reaches the same value as the eutectoid point in the equilibrium phase diagram. This finding indicates that the structure of the metastable low-temperature phase is reminiscent of the equilibrium structure.
Resumo:
We present a lattice model to study the equilibrium phase diagram of ordered alloys with one magnetic component that exhibits a low temperature phase separation between paramagnetic and ferromagnetic phases. The model is constructed from the experimental facts observed in Cu3-xAlMnx and it includes coupling between configurational and magnetic degrees of freedom that are appropriate for reproducing the low temperature miscibility gap. The essential ingredient for the occurrence of such a coexistence region is the development of ferromagnetic order induced by the long-range atomic order of the magnetic component. A comparative study of both mean-field and Monte Carlo solutions is presented. Moreover, the model may enable the study of the structure of ferromagnetic domains embedded in the nonmagnetic matrix. This is relevant in relation to phenomena such as magnetoresistance and paramagnetism
Resumo:
We present a study of a phase-separation process induced by the presence of spatially correlated multiplicative noise. We develop a mean-field approach suitable for conserved-order-parameter systems and use it to obtain the phase diagram of the model. Mean-field results are compared with numerical simulations of the complete model in two dimensions. Additionally, a comparison between the noise-driven dynamics of conserved and nonconserved systems is made at the level of the mean-field approximation.