1000 resultados para PH electrodes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adsorption of 4-aminopyridine (4-AP) on Co and Ag electrodes in acid or alkaline solutions of KCl and KI electrolyte salts were monitored by the Surface-enhanced Raman Spectroscopy (SERS) technique. The SERS intensity for the Ag electrode was in 2 orders of magnitude higher than for the Co electrode, due to the enhancement of the Raman cross-section on Ag by the surface-plasmon excitation. In acidic chloride medium (pH 4), the SERS results for Ag electrodes indicate that the protonated form of 4-AP (4-APH(+)) adsorbs in the potential range of -0.1 to -0.6 V (Ag broken vertical bar AgCl broken vertical bar KCl sat) through hydrogen-bonding between 4-APH(+) and Cl(-) adsorbed on the electrode surface: at more negative potentials the neutral form 4-AP is the predominant adsorbed species. For Co electrode in the same medium, only bands due to neutral 4-AP were observed in the spectra at -0.8 and -0.9 V. For more negative potentials bands assigned to both 4-AP and 4-AP surface complex are observed, with the lasts being enhanced, as the potentials are turned more negative. In alkaline chloride medium (pH 13), for less negative potentials the bands assigned to free 4-AP were observed in the spectra of both Ag and Co surfaces. For more negative potentials, only bands assigned to the 4-AP surface complex were observed. For 0.1 mol L(-1) KI acidic or alkaline solutions, bands assigned to 4-AP and 4-APH(+) were observed in a wider potential range than in chloride solutions. An adsorption scheme of 4-AP on Ag and Co is proposed for acidic and alkaline solutions. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical oxidation of promethazine hydrochloride was made on highly boron-doped diamond electrodes. Cyclic voltammetry experiments showed that the oxidation mechanisms involved the formation of an adsorbed product that is more readily oxidized, producing a new peak with lower potential values whose intensity can be increased by applying the accumulation potential for given times. The parameters were optimized and the highest current intensities were obtained by applying +0.78 V for 30 seconds. The square-wave adsorptive voltammetry results obtained in BR buffer showed two well-defined peaks, dependent on the pH and on the voltammetric parameters. The best responses were obtained at pH 4.0, frequency of 50 s(-1), step of 2 mV, and amplitude of 50 mV. Under these conditions, linear responses were obtained for concentrations from 5.96 x 10(-7) to 4.76 x 10(-6) mol L-1, and calculated detection limits of 2.66 x 10(-8) mol L-1 (8.51 mu g L-1) for peak 1 and of 4.61 x 10(-8) mol L-1 (14.77 mu g L-1) for peak 2. The precision and accuracy were evaluated by repeatability and reproducibility experiments, which yielded values of less than 5.00% for both voltammetric peaks. ne applicability of this procedure was tested on commercial formulations of promethazine hydrochloride by observing the stability, specificity, recovery and precision of the procedure in complex samples. All results obtained were compared to recommended procedure by British Pharmacopeia. The voltammetric results indicate that the proposed procedure is stable and sensitive, with good reproducibility even when the accumulation steps involve short times. It is therefore very suitable for the development of the electroanalytical procedure, providing adequate sensitivity and a reliable method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A copper phthalocyanine/multiwalled carbon nanotube film-modified glassy carbon electrode has been used for the determination of the herbicide glyphosate (Gly) at -50 mV vs. SCE by electrochemical oxidation using differential pulse voltamtnetry (DPV). Cyclic voltammetry and electrochemical impedance spectroscopy showed that Gly is adsorbed on the metallic centre of the copper phthalocyanine molecule, with formation of Gly-copper ion complexes. An analytical method was developed using DPV in pH 7.4 phosphate buffer solution, without any pretreatment steps: Gly was determined in the concentration range of 0.83-9.90 mu mol L(-1), with detection limit 12.2 nmol L(-1) (2.02 mu g L(-1))

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytase (myo-inositol hexaphosphate phosphohydrolase) and phytic acid (myo-inositol hexaphosphate) play an important environmental role, in addition to being a health issue in food industry. Phytic acid is antinutritional due to its ability to chelate metal ions and may also react with proteins decreasing their bioavailability. In this work, we produced biosensors with phytase immobilized in Layer-by-Layer (LbL) films, which could detect phytic acid with a detection limit of 0.19 mmol L-1, which is sufficient to detect phytic acid in seeds of grains and vegetables. The biosensosrs consisted of LbL films containing up to eight bilayers of phytase alternated with poly(allylamine) hydrochloride (PAH) deposited onto an indium-tin oxide (ITO) substrate modified with Prussian Blue. Amperometric detection was conducted in an acetate buffer solution (at pH 5.5) at room temperature, with the biosensor response attributed to the formation of phosphate ions. In subsidiary experiments with the currents measured at 0.0 V (vs. SCE), we demonstrated the absence of effects from some interferents, pointing to a good selectivity of the biosensor. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The feasibility of the photobleaching of a textile azo dye, reactive orange 16 (C.I. 17757), in aqueous solution using titanium dioxide thin-film electrodes prepared by the sol-gel method was investigated. The best conditions for maximum photoelectrocatalytic degradation were found to be pH > 10 for Na2SO4 medium and pH < 6 for NaCl. In both situations, an applied potential of +1.0 V and low dye concentration are recommended, when 100% of color removal is obtained after 20 min of photoelectrocatalysis. The effects of side reaction pathway on the degradation rate of dye in sulfate and chloride medium were presented and the best performance are optimized to situations closed to that verified in the textile effluent. The influence of variables as applied potential, pH, supporting electrolyte and dye concentration on the kinetics of photoelectrochemical degradation also were investigated. Oxalic acid is identified by HPLC and UV-Vis spectrophotometric methods as the main degradation product generated after 180 min of photoelectrocatalysis of 4 x 10(-5) mol l(-1) dye in sodium sulphate pH 12 and NaCl pH 4.0 and a maximum reduction of 56 and 62% TOC was obtained, respectively. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The generation of active chlorine on Ti/Sn(1-x)Ir (x) O-2 anodes, with different compositions of Ir (x = 0.01, 0.05, 0.10 and 0.30 ), was investigated by controlled current density electrolysis. Using a low concentration of chloride ions (0.05 mol L-1) and a low current density (5 mA cm(-2)) it was possible to produce up to 60 mg L-1 of active chlorine on a Ti/Sn0.99Ir0.01O2 anode. The feasibility of the discoloration of a textile acid azo dye, acid red 29 dye (C.I. 16570), was also investigated with in situ electrogenerated active chlorine on Ti/Sn(1-x)Ir (x) O-2 anodes. The best conditions for 100% discoloration and maximum degradation (70% TOC reduction) were found to be: NaCl pH 4, 25 mA cm(-2) and 6 h of electrolysis. It is suggested that active chlorine generation and/or powerful oxidants such as chlorine radicals and hydroxyl radicals are responsible for promoting faster dye degradation. Rate constants calculated from color decay versus time reveal a zero order reaction at dye concentrations up to 1.0 x 10(-4) mol L-1. Effects of other electrolytes, dye concentration and applied density currents also have been investigated and are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cromoglycate is accumulated on a poly-L-lysine (PLL) modified carbon electrode best from pH 4 solution, where it is anionic and the PLL is cationic, and at which pH the cromoglycate gives a good reduction peak at -0.82 V. The PLL film can be regenerated readily by washing the electrode with 3 M sodium hydroxide solution, in which the PLL is deprotonated. Regeneration of the film is not required as frequently when larger amounts of PLL are incorporated into it. This allows standard addition procedures to be carried out without regenerating the electrode. Linear calibration graphs have been obtained typically in the range 0.1 - 1.5 mug ml(-1). Detection limits have been calculated to be 10 ng ml(-1). The standard addition method has been applied satisfactorily to diluted urine solutions. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical oxidation of cyanide in alkaline media was studied at different pH levels on SnO2 doped with Sb supported on titanium, at 25 degrees C, the electrooxidation of CN- at constant current follows a first-order rate law with a half life of t(1/2) = 35 min on SnO2-SbOx electrodes and t(1/2) = 69 min on SnO2-SbOx-RuO2 electrodes, in K2SO4(aq), pH 12, the reaction rate increases with the applied current and tends to reach a plateau when j > 20 mA cm(-2), In the pH range 10-13.5 the reaction rate diminishes as pH is increased owing to an increasing competition between CN- and OH- ions for the electrode surface. Addition of chloride to the solution does not alter the rate law but increases the reaction rate, A mechanism is proposed to explain the observed behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical behaviour of potentiodynamically formed thin anodic films of polycrystalline tin in aqueous sodium bicarbonate solutions (pH approximate to 8.3) were studied using cyclic voltammetry and electrochemical impedance spectroscopy. Different equivalent circuits corresponding to various potential regions were employed to account for the electrochemical processes taking place under each condition. (C) 2004 Elsevier Ltd. All rights reserved.