954 resultados para PGE(2) and rat mechanical hypernociception
Resumo:
In response to pathogen recognition by Toll-like receptors (TLRs) on their cell surface, macrophages release lipid mediators and cytokines that are widely distributed throughout the body and play essential roles in host responses. Granulocyte macrophage colony-stimulating factor (GM-CSF) is important for the immune response during infections to improve the clearance of microorganisms. In this study, we examined the release of mediators in response to TLR2 ligands by bone marrow-derived macrophages (BMDMs) primed with GM-CSF. We demonstrated that when stimulated with TLR2 ligands, non-primed BMDMs preferentially produced PGE(2) in greater amounts than LTB4. However, GM-CSF priming shifted the release of lipid mediators by BMDMs, resulting in a significant decrease of PGE(2) production in response to the same stimuli. The decrease of PGE(2) production from primed BMDMs was accompanied by a decrease in PGE-synthase mRNA expression and an increase in TNF-alpha and nitric oxide (NO) production. Moreover, some GM-CSF effects were potentiated by the addition of IFN-gamma. Using a variety of TLR2 ligands, we established that PGE(2) release by GM-CSF-primed BMDMs was dependent on TLR2 co-receptors (TLR1, TLR6), CD14, MyD88 and the nuclear translocation of NF kappa B but was not dependent on peroxisome proliferator-activated receptor-gamma (PPAR-gamma) activation. Indeed, GM-CSF priming enhanced TLR2, TLR4 and MyD88 mRNA expression and phospho-I kappa B alpha formation. These findings demonstrate that GM-CSF drives BMDMs to present a profile relevant to the host during infections.
Resumo:
Leaf extract of Centella asiatica has been used as an alternative medicine for memory improvement in the Indian Ayurvedic system of medicine for a long time. Although several studies have revealed its effect in ameliorating the cognitive impairment in rat models of Alzheimer's disease, the molecular mechanism of C. asiatica on neuroprotection still remains unexplained. In this study, we investigated the effects of C. asiatica water extract on activity of subtypes of phospholipase A(2) (PLA(2)) in primary cultures of rat cortical neurons and quantified by HPLC a possible molecule responsible for the activity. The cPLA(2) and sPLA(2) activities were inhibited in vitro by asiaticoside present in the water extract of C. asiatica. This extract may be a candidate for the treatment of neurodegenerative processes because of its pharmacological activity in the brain and its low toxicity, as attested by its long popular use as a natural product.
Resumo:
The PM3 quantum-mechanical method is able to model the magic water clusters (H20),, and (H20)&+. Results indicate that the H30+ ion is tightly bound within the (H20),, cluster by multiple hydrogen bonds, causing deformation to the symmetric (HzO),, pentagonal dodecahedron structure. The structures, energetics, and hydrogen bond patterns of six local minima (H20)21H+ clusters are presented.
Resumo:
ω3-polyunsaturated fatty acids (ω3-PUFAs) are known to exert anti-inflammatory effects in various disease models although their direct targets are only poorly characterized.
Resumo:
Production of prostaglandins involved in renal salt and water homeostasis is modulated by regulated expression of the inducible form of cyclooxygenase-2 (COX-2) at restricted sites in the rat renal cortex. Because inflammatory COX-2 is suppressed by glucocorticoids, and prostaglandin levels in the kidney are sensitive to steroids, the sensitivity of COX expression to adrenalectomy (ADX) was investigated. By 2 weeks after ADX in mature rats, cortical COX-2 immunoreactivity increased 10-fold in the cortical thick ascending limb and macula densa. The constitutive isoform, COX-1, was unchanged. The magnitude of the changes and specificity of COX-2 immunoreactivity were validated by in situ hybridization histochemistry of COX-2 mRNA and Western blot analysis. Increased COX-2 activity (>5-fold) was documented by using a specific COX-2 inhibitor. The COX-2 up-regulation in ADX rats was reversed by replacement therapy with either corticosterone or deoxycorticosterone acetate. In normal rats, inhibition of glucocorticoid receptors with RU486 or mineralocorticoid receptors with spironolactone caused up-regulation of renal cortical COX-2. These results indicate that COX-2 expression in situ is tonically inhibited by adrenal steroids, and COX-2 is regulated by mineralocorticoids as well as glucocorticoids.
Resumo:
1. The ability of the CGRP antagonist BIBN4096BS to antagonize CGRP and adrenomedullin has been investigated on cell lines endogenously expressing receptors of known composition. 2. On human SK-N-MC cells (expressing human calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein 1 (RAMP1)), BIBN4096BS had a pA 2 of 9.95 although the slope of the Schild plot (1.37±0.16) was significantly greater than 1. 3. On rat L6 cells (expressing rat CRLR and RAMP1), BIBN4096BS had a pA 2 of 9.25 and a Schild slope of 0.89±0.05, significantly less than 1. 4. On human Colony (Col) 29 cells, CGRP 8-37 had a significantly lower pA 2 than on SK-N-MC cells (7.34±0.19 (n=7) compared to 8.35±0.18, (n=6)). BIBN4096BS had a pA 2 of 9.98 and a Schild plot slope of 0.86±0.19 that was not significantly different from 1. At concentrations in excess of 3 nM, it was less potent on Col 29 cells than on SK-N-MC cells. 5. On Rat 2 cells, expressing rat CRLR and RAMP2, BIBN4096BS was unable to antagonize adrenomedullin at concentrations up to 10 μM. CGRP 8-37 had a pA 2 of 6.72 against adrenomedullin. 6. BIBN4096BS shows selectivity for the human CRLR/RAMP1 combination compared to the rat counterpart. It can discriminate between the CRLR/RAMP1 receptor expressed on SK-N-MC cells and the CGRP-responsive receptor expressed by the Col 29 cells used in this study. Its slow kinetics may explain its apparent 'non-competive' behaviour. At concentrations of up to 10 μM, it has no antagonist actions at the adrenomedullin, CRLR/RAMP2 receptor, unlike CGRP 8-37.
Resumo:
The effects of myotoxin III (MT-III), a phospholipase A(2) (sPLA(2)) from Bothrops asper snake venom, and crotoxin B (CB), a neurotoxic and myotoxic sPLA2 from the venom of Crotalus durissus terrificus, on cyclooxygenases (COXs) expression and biosynthesis of prostaglandins (PGs) were evaluated, together with the mechanisms involved in these effects. Upon intraperitoneal injection in mice, both sPLA(2)s promoted the synthesis of PGD(2) and PGE(2), with a different time-course. MT-III, but not CB, induced COX-2 expression by peritoneal leukocytes without modification on COX-1 constitutive expression, whereas CB increased the constitutive activity of COX-1. MT-III increased the enzymatic activity of COX-1 and COX-2. Similar effects were observed when these sPLA(2)s were incubated with isolated macrophages, evidencing a direct effect on these inflammatory cells. Moreover, both toxins elicited the release of arachidonic acid from macrophages in vitro. inhibition of cPLA(2) by AACOCF(3), but not of iPLA(2) by PACOCF(3) or BEL, significantly reduced PGD2, PGE2 and arachidonic acid (AA) release promoted by MT-III. These inhibitors did not affect MT-III-induced COX-2 expression. In contrast, cPLA2 inhibition did not modify the effects of CB, whereas iPLA2 inhibition reduced PGD2 and AA production induced by CB. These findings imply that distinct regulatory mechanisms leading to PGs` synthesis are triggered by these snake venom sPLA(2)s. Such differences are likely to explain the dissimilar patterns of inflammatory reaction elicited by these sPLA(2)s in vivo. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
During rat hepatocarcinogenesis preneoplastic lesions (PNL) emerge which may persist (pPNL) and be sites of progress to cancer or suffer remodeling (rPNL) tending to disappear. Cellular and molecular mechanisms involved in both phenotypes are not sufficiently elucidated. pPNL and rPNL cellular proliferation and apoptosis were evaluated in rats submitted to the resistant hepatocyte (RH) model, and an adjusted growth index (AGI) was established. p53, Bcl-2, and NF-kappa B p65 subunit expression was evaluated by immunohistochemistry in pPNL and rPNL. p65 expression and NF-kappa B activation was evaluated by Western blot assays in whole livers. A lower number of BrdU-stained hepatocyte nuclei/mm(2) and higher number of apoptotic bodies (AB) per mm(2) were observed in remodeling compared to pPNL. Cytoplasmic p53 accumulation is related to increased hepatocarcinoma malignancy. We observed that 71.3% pPNL and 25.4% rPNL (P < 0.05) presented p53 staining in the cytoplasm. Similarly, 67.7% pPNL and 23.1 % rPNL (P < 0.05) presented increased Bcl-2 staining. Thirty-two percent pPNL and 15.6% rPNL (P < 0.05) presented p65 staining. Compared to normal rats, increase (P < 0.05) of hepatic p65 expression and NF-kappa B activation in rats submitted to the RH model was observed. in agreement to previous studies hepatic pPNL and rPNL differ regarding cell proliferation and apoptosis. Moreover, persistence and remodeling involve differences in p53, Bcl-2, and NF-kappa B pathways. These data point to molecular pathways that may direct preneoplastic lesions to spontaneously regress or to progress to cancer.
Resumo:
BACKGROUND AND PURPOSE Bacterial lipopolysaccharide (LPS) induces fever through two parallel pathways; one, prostaglandin (PG)-dependent and the other, PG-independent and involving endothelin-1 (ET-1). For a better understanding of the mechanisms by which dipyrone exerts antipyresis, we have investigated its effects on fever and changes in PGE(2) content in plasma, CSF and hypothalamus induced by either LPS or ET-1. EXPERIMENTAL APPROACH Rats were given (i.p.) dipyrone (120 mg center dot kg-1) or indomethacin (2 mg center dot kg-1) 30 min before injection of LPS (5 mu g center dot kg-1, i.v.) or ET-1 (1 pmol, i.c.v.). Rectal temperature was measured by tele-thermometry. PGE(2) levels were determined in the plasma, CSF and hypothalamus by elisa. KEY RESULTS LPS or ET-1 induced fever and increased CSF and hypothalamic PGE(2) levels. Two hours after LPS, indomethacin reduced CSF and hypothalamic PGE(2) but did not inhibit fever, while at 3 h it reduced all three parameters. Three hours after ET-1, indomethacin inhibited the increase in CSF and hypothalamic PGE(2) levels but did not affect fever. Dipyrone abolished both the fever and the increased CSF PGE(2) levels induced by LPS or ET-1 but did not affect the increased hypothalamic PGE(2) levels. Dipyrone also reduced the increase in the venous plasma PGE(2) concentration induced by LPS. CONCLUSIONS AND IMPLICATIONS These findings confirm that PGE(2) does not play a relevant role in ET-1-induced fever. They also demonstrate for the first time that the antipyretic effect of dipyrone was not mechanistically linked to the inhibition of hypothalamic PGE(2) synthesis.
Resumo:
The role of beta(3)- and other putative atypical beta-adrenaceptors in human white adipocytes and right atrial appendage has been investigated using CGP 12177 and novel phenylethanolamine and aryloxypropanolamine beta(3)-adrenoceptor (beta(3)AR) agonists with varying intrinsic activities and selectivities for human cloned PAR subtypes. The ability to demonstrate beta(1/2)AR antagonist-insensitive (beta(3) or other atypical beta AR-mediated) responses to CGP 12177 was critically dependent on the albumin batch used to prepare and incubate the adipocytes. Four aryloxypropanolamine selective beta(3)AR agonists (SB-226552, SB-229432, SB-236923, SB-246982) consistently elicited beta(1/2)AR antagonist-insensitive lipolysis. However, a phenylethanolamine (SB-220646) that was a selective full beta(3)AR agonist elicited full lipolytic and inotropic responses that were sensitive to beta(1/2)AR antagonism, despite it having very low efficacies at cloned beta(1)- and beta(2)ARs. A component of the response to another phenylethanolamine selective beta(3)AR agonist (SB-215691) was insensitive to beta(1/2)AR antagonism in some experiments. Because novel aryloxypropanolamine had a beta(1/2)AR antagonist-insensitive inotropic effect, these results establish more firmly that beta(3)ARs mediate lipolysis in human white adipocytes, and suggest that putative 'beta(4)ARs' mediate inotropic responses to CGP 12177. The results also illustrate the difficulty of predicting from studies on cloned beta ARs which beta ARs will mediate responses to agonists in tissues that have a high number of beta(1)- and beta(2)ARs or a low number of beta(3)ARs.
Resumo:
1. The role of myoplasmic [Mg2+] on Ca2+ release from the sarcoplasmic reticulum (SR) was examined in the two major types of crustacean muscle fibres, the tonic, long sarcomere fibres and the phasic, short sarcomere fibres of the fresh mater decapod crustacean Cherax: destructor (yabby) and in the fast-twitch rat muscle fibres using the mechanically skinned muscle fibre preparation. 2. A robust Ca2+-induced Ca2+-release (CICR) mechanism was present in both long and short sarcomere fibres and 1 mM Mg2+ exerted a strong inhibitory action on the XR Ca2+ release in both fibre types. 3. The XR displayed different properties with respect to Ca2+ loading in the long and the short sarcomere fibres and marked functional differences were identified with respect to Mg2+ inhibition between the two crustacean fibre types. Thus, in long sarcomere fibres, the submaximally loaded XR was able to release Ca2+ when [Mg2+] was lowered from 1 to 0.01 mw in the presence of 8 mM ATP(total) and in the virtual absence of Ca2+ (< 5 nM) even when the CICR was suppressed. In contrast, negligible Ca2+ was released from the submaximally loaded SR of short sarcomere yabby fibres when [Mg2+] was lowered from 1. to 0.01 mM under the same conditions as for the long sarcomere fibres. Nevertheless, the rate of XR Ca2+ release in short sarcomere fibres increased markedly when [Mg2+] was lowered in the presence of [Ca2+] approaching the normal resting levels (50-100 nM). 4. Rat fibres were able to release SR Ca2+ at a faster rate than the long sarcomere yabby fibres when [Mg2+] was lowered from 1 to 0.01 mM in the virtual absence of Ca2+ but, unlike with yabby fibres, the net rate of Ca2+ release was actually increased for conditions that were considerably less favourable to CICR. 5. In summary it is concluded that crustacean skeletal muscles have more that one functional type of Ca2+-release channels, that these channels display properties that are intermediate between those of mammalian skeletal and cardiac isoforms, that the inhibition exerted by Mg2+ at rest on the crustacean SR Ca2+-release channels must be removed during excitation-contraction coupling and that, unlike in crustacean fibres, CICR cannot play the major role in the activation of XR Ca2+-release channels in the rat skeletal muscle.
Resumo:
The volume of the extracellular compartment (tubular system) within intact muscle fibres from cane toad and rat was measured under various conditions using confocal microscopy. Under physiological conditions at rest, the fractional volume of the tubular system (t-sys(Vol)) was 1.38 +/- 0.09% (n = 17),1.41 +/- 0.09% (n = 12) and 0.83 +/- 0.07% (n = 12) of the total fibre volume in the twitch fibres from toad iliofibularis muscle, rat extensor digitorum longus muscle and rat soleus muscle, respectively. In toad muscle fibres, the t-sys(Vol) decreased by 30% when the tubular system was fully depolarized and decreased by 15% when membrane cholesterol was depleted from the tubular system with methyl-beta-cyclodextrin but did not change as the sarcomere length was changed from 1.93 to 3.30 mum. There was also an increase by 30% and a decrease by 25% in t-sys(Vol) when toad fibres were equilibrated in solutions that were 2.5-fold hypertonic and 50% hypotonic, respectively. When the changes in total fibre volume were taken into consideration, the t-sys(Vol) expressed as a percentage of the isotonic fibre volume did actually decrease as tonicity increased, revealing that the tubular system in intact fibres cannot be compressed below 0.9% of the isotonic fibre volume. The results can be explained in terms of forces acting at the level of the tubular wall. These observations have important physiological implications showing that the tubular system is a dynamic membrane structure capable of changing its volume in response to the membrane potential, cholesterol depletion and osmotic stress but not when the sarcomere length is changed in resting muscle.
Resumo:
A method was developed that allows conversion of changes in maximum Ca2+-dependent fluorescence of a fixed amount of fluo-3 into volume changes of the fluo-3-containing solution. This method was then applied to investigate by confocal microscopy the osmotic properties of the sealed tubular (t-) system of toad and rat mechanically skinned fibers in which a certain amount Of fluo-3 was trapped. When the osmolality of the myoplasmic environment was altered by simple dilution or addition of sucrose within the range 190-638 mosmol kg(-1), the sealed t-system of toad fibers behaved almost like an ideal osmometer, changing its volume inverse proportionally to osmolality However, increasing the osmolality above 638 to 2,550 mosmol kg(-1) caused hardly any change in t-system volume. In myoplasmic solutions made hypotonic to 128 mosmol kg(-1), a loss of Ca2+ from the sealed t-system of toad fibers Occurred, presumably through either stretch-activated cationic channels or store-operated Ca2+ channels. In contrast to the behavior of the t-system in toad fibers, the volume of the sealed t-system of rat fibers changed little (by
Resumo:
The ability of mesenchymal stem cells to generate functional neurons in culture is still a matter of controversy. In order to assess this issue, we performed a functional comparison between neuronal differentiation of human MSCs and fetal-derived neural stem cells (NSCs) based on morphological, immunocytochemical, and electrophysiological criteria. Furthermore, possible biochemical mechanisms involved in this process were presented. NF200 immunostaining was used to quantify the yield of differentiated cells after exposure to CAMP. The addition of a PKA inhibitor and Ca(2+) blockers to the differentiation medium significantly reduced the yield of differentiated cells. Activation of CREB was also observed on MSCs during maturation. Na(+)-, K(+)-, and Ca(2+)-voltage-dependent currents were recorded from MSCs-derived cells. In contrast, significantly larger Na(+) currents, firing activity, and spontaneous synaptic currents were recorded from NSCs. Our results indicate that the initial neuronal differentiation of MSCs is induced by CAMP and seems to be dependent upon Ca(2+) and the PKA pathway. However, compared to fetal neural stem cells, adult mesenchymal counterparts are limited in their neurogenic potential. Despite the similar yield of neuronal cells, NSCs achieved a more mature functional state. Description of the underlying mechanisms that govern MSCs` differentiation toward a stable neuronal phenotype and their limitations provides a unique opportunity to enhance our understanding of stem cell plasticity. (C) 2009 Elsevier Inc. All rights reserved.