888 resultados para PFG-NMR spin echo
Resumo:
The structural organization of Sb2O3-SbPO4 glasses has been studied by FTIR, Raman, P-31 MAS and spin echo NMR, Mossbauer and X-ray absorption spectroscopy (EXAFS and XANES at K and L-3,L-1-Sb edges). The combined results can be explained in terms of two potential mechanisms describing the change of the Sb(m) local environment upon incorporation of Q((4))-type phosphate. The formation of the latter species requires anionic compensation that may be adjusted by (a) formation of non bridging oxygen or (b) formation of SbO4E- groups (E = non-bonding electron pair). The second model is favored.
Resumo:
Glasses in the binary system (100 - x)SbPO4-xWO3 (20 <= x <= 60, x in mol%) have been prepared and characterized. Differential thermal analysis (DTA) shows that the glass transition temperature, T-g increases from 412 degrees C, for samples containing 20 mol% of WO3 to 481 degrees C observed for glass containing 60 mol%. Sample containing 40 mol% in WO3 were observed to be the most stable against devitrification. The structural organization of the glasses has been studied by using Fourier transform infra-red (FTIR), Raman, P-31 Magic angle spinning (MAS) and spin echo nuclear magnetic resonance (NMR) spectroscopies. Results suggest two distinct networks comprising the glass structure, one with high SbPO4 content and the other characteristic of the highest WO3 content samples. The glasses present photochromic properties. Colour changes are observed for samples after exposure to ultraviolet or visible laser light. XANES, at L-1 absorption edge of tungsten, suggests partial reduction from W6+ to W5+ species during the laser irradiation. The photochromic effects and the colour changes, promoted by laser excitation, are reversible and easily removed by heat for during 1 h at 150 degrees C. Subsequent 'write/erase' cycles can be done without degradation of the glasses. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Two structural properties in mixed alkali metal phosphate glasses that seem to be crucial to the development of the mixed ion effect in dc conductivity were systematically analyzed in Na mixed metaphosphates: the local order around the mobile species, and their distribution and mixing in the glass network. The set of glasses considered here, Na1-xMxPO3 with M = Li, Ag, K, Rb, and Cs and 0 <= x <= 1, encompass a broad degree of size mismatch between the mixed cation species. A comprehensive solid-state nuclear magnetic resonance study was carried out using P-31 MAS, Na-23 triple quantum MAS, Rb-87 QCPMG, P-31-Na-23 REDOR, Na-23-Li-7 and Li-7-Li-6 SEDOR, and Na-23 spin echo decay. It was observed that the arrangement of P atoms around Na in the mixed glasses was indistinguishable from that observed in the NaPO3 glass. However, systematic distortions in the local structure of the 0 environments around Na were observed, related to the presence of the second cation. The average Na-O distances show an expansion/compression When Na+ ions are replaced by cations with respectively smaller/bigger radii. The behavior of the nuclear electric quadrupole coupling. constants indicates that this expansion reduces the local symmetry, while the compression produces the opposite effect These effects become marginally small when the site mismatch between the cations is small, as in Na-Ag mixed glasses. The present study confirms the intimate mixing of cation species at the atomic scale, but clear deviations from random mixing were detected in systems with larger alkali metal ions (Cs-Na, K-Na, Rb-Na). In contrast, no deviations from the statistical ion mixture were found in the systems Ag-Na and Li-Na, where mixed cations are either of radii comparable to (Ag+) or smaller than (Li+) Na+. The set of results supports two fundamental structural features of the models proposed to explain the mixed ion effect: the. structural specificity of the sites occupied by each cation species and their mixing at the atomic scale.
Resumo:
This thesis is focused on the metabolomic study of human cancer tissues by ex vivo High Resolution-Magic Angle Spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy. This new technique allows for the acquisition of spectra directly on intact tissues (biopsy or surgery), and it has become very important for integrated metabonomics studies. The objective is to identify metabolites that can be used as markers for the discrimination of the different types of cancer, for the grading, and for the assessment of the evolution of the tumour. Furthermore, an attempt to recognize metabolites, that although involved in the metabolism of tumoral tissues in low concentration, can be important modulators of neoplastic proliferation, was performed. In addition, NMR data was integrated with statistical techniques in order to obtain semi-quantitative information about the metabolite markers. In the case of gliomas, the NMR study was correlated with gene expression of neoplastic tissues. Chapter 1 begins with a general description of a new “omics” study, the metabolomics. The study of metabolism can contribute significantly to biomedical research and, ultimately, to clinical medical practice. This rapidly developing discipline involves the study of the metabolome: the total repertoire of small molecules present in cells, tissues, organs, and biological fluids. Metabolomic approaches are becoming increasingly popular in disease diagnosis and will play an important role on improving our understanding of cancer mechanism. Chapter 2 addresses in more detail the basis of NMR Spectroscopy, presenting the new HR-MAS NMR tool, that is gaining importance in the examination of tumour tissues, and in the assessment of tumour grade. Some advanced chemometric methods were used in an attempt to enhance the interpretation and quantitative information of the HR-MAS NMR data are and presented in chapter 3. Chemometric methods seem to have a high potential in the study of human diseases, as it permits the extraction of new and relevant information from spectroscopic data, allowing a better interpretation of the results. Chapter 4 reports results obtained from HR-MAS NMR analyses performed on different brain tumours: medulloblastoma, meningioms and gliomas. The medulloblastoma study is a case report of primitive neuroectodermal tumor (PNET) localised in the cerebellar region by Magnetic Resonance Imaging (MRI) in a 3-year-old child. In vivo single voxel 1H MRS shows high specificity in detecting the main metabolic alterations in the primitive cerebellar lesion; which consist of very high amounts of the choline-containing compounds and of very low levels of creatine derivatives and N-acetylaspartate. Ex vivo HR-MAS NMR, performed at 9.4 Tesla on the neoplastic specimen collected during surgery, allows the unambiguous identification of several metabolites giving a more in-depth evaluation of the metabolic pattern of the lesion. The ex vivo HR-MAS NMR spectra show higher detail than that obtained in vivo. In addition, the spectroscopic data appear to correlate with some morphological features of the medulloblastoma. The present study shows that ex vivo HR-MAS 1H NMR is able to strongly improve the clinical possibility of in vivo MRS and can be used in conjunction with in vivo spectroscopy for clinical purposes. Three histological subtypes of meningiomas (meningothelial, fibrous and oncocytic) were analysed both by in vivo and ex vivo MRS experiments. The ex vivo HR-MAS investigations are very helpful for the assignment of the in vivo resonances of human meningiomas and for the validation of the quantification procedure of in vivo MR spectra. By using one- and two dimensional experiments, several metabolites in different histological subtypes of meningiomas, were identified. The spectroscopic data confirmed the presence of the typical metabolites of these benign neoplasms and, at the same time, that meningomas with different morphological characteristics have different metabolic profiles, particularly regarding macromolecules and lipids. The profile of total choline metabolites (tCho) and the expression of the Kennedy pathway genes in biopsies of human gliomas were also investigated using HR-MAS NMR, and microfluidic genomic cards. 1H HR-MAS spectra, allowed the resolution and relative quantification by LCModel of the resonances from choline (Cho), phosphorylcholine (PC) and glycerolphorylcholine (GPC), the three main components of the combined tCho peak observed in gliomas by in vivo 1H MRS spectroscopy. All glioma biopsies depicted an increase in tCho as calculated from the addition of Cho, PC and GPC HR-MAS resonances. However, the increase was constantly derived from augmented GPC in low grade NMR gliomas or increased PC content in the high grade gliomas, respectively. This circumstance allowed the unambiguous discrimination of high and low grade gliomas by 1H HR-MAS, which could not be achieved by calculating the tCho/Cr ratio commonly used by in vivo 1H MR spectroscopy. The expression of the genes involved in choline metabolism was investigated in the same biopsies. The present findings offer a convenient procedure to classify accurately glioma grade using 1H HR-MAS, providing in addition the genetic background for the alterations of choline metabolism observed in high and low gliomas grade. Chapter 5 reports the study on human gastrointestinal tract (stomach and colon) neoplasms. The human healthy gastric mucosa, and the characteristics of the biochemical profile of human gastric adenocarcinoma in comparison with that of healthy gastric mucosa were analyzed using ex vivo HR-MAS NMR. Healthy human mucosa is mainly characterized by the presence of small metabolites (more than 50 identified) and macromolecules. The adenocarcinoma spectra were dominated by the presence of signals due to triglycerides, that are usually very low in healthy gastric mucosa. The use of spin-echo experiments enable us to detect some metabolites in the unhealthy tissues and to determine their variation with respect to the healthy ones. Then, the ex vivo HR-MAS NMR analysis was applied to human gastric tissue, to obtain information on the molecular steps involved in the gastric carcinogenesis. A microscopic investigation was also carried out in order to identify and locate the lipids in the cellular and extra-cellular environments. Correlation of the morphological changes detected by transmission (TEM) and scanning (SEM) electron microscopy, with the metabolic profile of gastric mucosa in healthy, gastric atrophy autoimmune diseases (AAG), Helicobacter pylori-related gastritis and adenocarcinoma subjects, were obtained. These ultrastructural studies of AAG and gastric adenocarcinoma revealed lipid intra- and extra-cellularly accumulation associated with a severe prenecrotic hypoxia and mitochondrial degeneration. A deep insight into the metabolic profile of human healthy and neoplastic colon tissues was gained using ex vivo HR-MAS NMR spectroscopy in combination with multivariate methods: Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA). The NMR spectra of healthy tissues highlight different metabolic profiles with respect to those of neoplastic and microscopically normal colon specimens (these last obtained at least 15 cm far from the adenocarcinoma). Furthermore, metabolic variations are detected not only for neoplastic tissues with different histological diagnosis, but also for those classified identical by histological analysis. These findings suggest that the same subclass of colon carcinoma is characterized, at a certain degree, by metabolic heterogeneity. The statistical multivariate approach applied to the NMR data is crucial in order to find metabolic markers of the neoplastic state of colon tissues, and to correctly classify the samples. Significant different levels of choline containing compounds, taurine and myoinositol, were observed. Chapter 6 deals with the metabolic profile of normal and tumoral renal human tissues obtained by ex vivo HR-MAS NMR. The spectra of human normal cortex and medulla show the presence of differently distributed osmolytes as markers of physiological renal condition. The marked decrease or disappearance of these metabolites and the high lipid content (triglycerides and cholesteryl esters) is typical of clear cell renal carcinoma (RCC), while papillary RCC is characterized by the absence of lipids and very high amounts of taurine. This research is a contribution to the biochemical classification of renal neoplastic pathologies, especially for RCCs, which can be evaluated by in vivo MRS for clinical purposes. Moreover, these data help to gain a better knowledge of the molecular processes envolved in the onset of renal carcinogenesis.
Resumo:
Zusammenfassung Nanokomposite aus Polymeren und Schichtsilikaten werden zumeist auf der Basis natürlicher Tone wie Montmorillonit hergestellt. Für NMR- und EPR-Untersuchungen der Tensidschicht, die das Silikat mit dem Polymer kompatibilisiert, ist der Eisengehalt natürlicher Tone jedoch abträglich, weil er zu einer Verkürzung der Relaxationszeiten und zu einer Linienverbreiterung in den Spektren führt. Dieses Problem konnte überwunden werden, indem als Silikatkomponente eisenfreies, strukturell wohldefiniertes Magadiit hydrothermal synthetisiert und für die Kompositbildung eingesetzt wurde. Die Morphologie des Magadiits wurde durch Rasterelektronenmikroskopie charakterisiert und der Interkalationsgrad von schmelzinterkalierten Polymer-Nanokompositen wurde durch Weitwinkelröntgenstreuung bestimmt. Polymere mit Carbonylgruppen scheinen leichter zu interkalieren als solche ohne Carbonylgruppen. Polycaprolacton interkalierte sowohl in Oragnomagadiite auf der Basis von Ammoniumtensiden als auch in solche auf der Basis von Phosphoniumtensiden. Die Dynamik auf einer Nanosekundenzeitskala und die Struktur der Tensidschicht wurden mittels ortsspezifisch spinmarkierter Tensidsonden unter Nutzung von Dauerstrich- (CW) und Puls-Methoden der elektronenparamagnetischen Resonanzspektroskopie (EPR) untersucht. Zusätzlich wurde die statische 2H-Kernmagnetresonanz (NMR) an spezifisch deuterierten Tensiden angewendet, um die Tensiddynamik auf einer komplementären Zeitskala zwischen Mikrosekunden und Millisekunden zu erfassen. Sowohl die CW-EPR- als auch die 2H-NMR-Ergebnisse zeigen eine Beschleunigung der Tensiddynamik durch Interkalation von Polycaprolacton auf, während sich in den nichtinterkalierten Mikrokompositen mit Polystyrol die Tensiddynamik verlangsamt. Die Rotationskorrelationszeiten und Aktivierungsenergien offenbaren verschiedene Regime der Tensiddynamik. In Polystyrol-Mikrokompositen entspricht die Übergangstemperatur zwischen den Regimen der Glasübergangstemperatur von Polystyrol, während sie in Polycaprolacton-Nanokompositen bei der Schmelztemperatur von Polycaprolacton liegt. Durch die erhebliche Verlängerung der Elektronenspin-Relaxationszeiten bei Verwendung von eisenfreiem Magadiit können Messdaten hoher Qualität mit Puls-EPR-Experimenten erhalten werden. Insebsondere wurden die Vier-Puls-Elektron-Elektron-Doppelresonanz (DEER), die Elektronenspinechoenveloppenmodulation (ESEEM) und die Elektronen-Kern-Doppelresonanz (ENDOR) an spinmarkierten sowie spezifisch deuterierten Tensiden angewandt. Die ENDOR-Ergebnisse legen ein Model der Tensidschicht nahe, in dem zusätzlich zu den Oberflächenlagen auf dem Silikat eine wohldefinierte mittlere Lage existiert. Dieses Modell erklärt auch Verdünnungseffekte durch das Polymer in Kompositen mit Polycaprolacton und Polystyrol. Die umfangreiche Information aus den Magnetresonanztechniken ergänzt die Information aus konventionellen Charakterisierungstechniken wie Röntgendiffraktion und Transmissionselektronenmikroskopie und führt so zu einem detaillierteren Bild der Struktur und Dynamik der Tensidschicht in Nanokompositen aus Polymeren und Schichtsilikaten.
Resumo:
Efficient energy storage and conversion is playing a key role in overcoming the present and future challenges in energy supply. Batteries provide portable, electrochemical storage of green energy sources and potentially allow for a reduction of the dependence on fossil fuels, which is of great importance with respect to the issue of global warming. In view of both, energy density and energy drain, rechargeable lithium ion batteries outperform other present accumulator systems. However, despite great efforts over the last decades, the ideal electrolyte in terms of key characteristics such as capacity, cycle life, and most important reliable safety, has not yet been identified. rnrnSteps ahead in lithium ion battery technology require a fundamental understanding of lithium ion transport, salt association, and ion solvation within the electrolyte. Indeed, well-defined model compounds allow for systematic studies of molecular ion transport. Thus, in the present work, based on the concept of ‘immobilizing’ ion solvents, three main series with a cyclotriphosphazene (CTP), hexaphenylbenzene (HBP), and tetramethylcyclotetrasiloxane (TMS) scaffold were prepared. Lithium ion solvents, among others ethylene carbonate (EC), which has proven to fulfill together with pro-pylene carbonate safety and market concerns in commercial lithium ion batteries, were attached to the different cores via alkyl spacers of variable length.rnrnAll model compounds were fully characterized, pure and thermally stable up to at least 235 °C, covering the requested broad range of glass transition temperatures from -78.1 °C up to +6.2 °C. While the CTP models tend to rearrange at elevated temperatures over time, which questions the general stability of alkoxide related (poly)phosphazenes, both, the HPB and CTP based models show no evidence of core stacking. In particular the CTP derivatives represent good solvents for various lithium salts, exhibiting no significant differences in the ionic conductivity σ_dc and thus indicating comparable salt dissociation and rather independent motion of cations and ions.rnrnIn general, temperature-dependent bulk ionic conductivities investigated via impedance spectroscopy follow a William-Landel-Ferry (WLF) type behavior. Modifications of the alkyl spacer length were shown to influence ionic conductivities only in combination to changes in glass transition temperatures. Though the glass transition temperatures of the blends are low, their conductivities are only in the range of typical polymer electrolytes. The highest σ_dc obtained at ambient temperatures was 6.0 x 10-6 S•cm-1, strongly suggesting a rather tight coordination of the lithium ions to the solvating 2-oxo-1,3-dioxolane moieties, supported by the increased σ_dc values for the oligo(ethylene oxide) based analogues.rnrnFurther insights into the mechanism of lithium ion dynamics were derived from 7Li and 13C Solid- State NMR investigations. While localized ion motion was probed by i.e. 7Li spin-lattice relaxation measurements with apparent activation energies E_a of 20 to 40 kJ/mol, long-range macroscopic transport was monitored by Pulsed-Field Gradient (PFG) NMR, providing an E_a of 61 kJ/mol. The latter is in good agreement with the values determined from bulk conductivity data, indicating the major contribution of ion transport was only detected by PFG NMR. However, the μm-diffusion is rather slow, emphasizing the strong lithium coordination to the carbonyl oxygens, which hampers sufficient ion conductivities and suggests exploring ‘softer’ solvating moieties in future electrolytes.rn
Resumo:
It was our aim to investigate the gadolinium diethylenetriaminepentaacetate (Gd-DTPA(2-) ) enhancement kinetics in the menisci of the knee joint over a prolonged period of time. Six asymptomatic volunteers (four men and two women; mean age, 25 ± 2.4 years) were enrolled. Sagittal, T(1) -weighted, spin-echo MR sequences of the right knee joint were obtained at 3 T. Imaging was performed before (baseline), 1 h after and in half-hour intervals up to 9 h after the intravenous administration of 0.2 mmol/kg of Gd-DTPA(2-) . To measure the rates of contrast enhancement relative to the baseline, regions of interest that covered the anterior and posterior horns of the medial and lateral meniscus were defined on each of two adjacent sections, and enhancement curves were constructed. An enhancement peak between 2.5 and 4.5 h after Gd-DTPA(2-) administration was observed, and analysis of variance also revealed no significant difference (p=0.94), in terms of enhancement, within this time interval. Pair-wise, post hoc testing also revealed no significant differences between 2.5 and 3, 3 and 3.5, 3.5 and 4, and 4 and 4.5 h post Gd-DTPA(2-) application. Our preliminary data therefore suggest that the time window suitable for a dGEMRIC (delayed gadolinium-enhanced MRI of cartilage)-like T(1) mapping of the menisci is relatively short, and lies between 2.5 and 4.5 h after Gd-DTPA(2-) injection.
Resumo:
Ultrasmall superparamagnetic iron oxide (USPIO) particles are promising contrast media, especially for molecular and cellular imaging besides lymph node staging owing to their superior NMR efficacy, macrophage uptake and lymphotropic properties. The goal of the present prospective clinical work was to validate quantification of signal decrease on high-resolution T(2)-weighted MR sequences before and 24-36 h after USPIO administration for accurate differentiation between benign and malignant normal-sized pelvic lymph nodes. Fifty-eight patients with bladder or prostate cancer were examined on a 3 T MR unit and their respective lymph node signal intensities (SI), signal-to-noise (SNR) and contrast-to-noise (CNR) were determined on pre- and post-contrast 3D T(2)-weighted turbo spin echo (TSE) images. Based on histology and/or localization, USPIO-uptake-related SI/SNR decrease of benign vs malignant and pelvic vs inguinal lymph nodes was compared. Out of 2182 resected lymph nodes 366 were selected for MRI post-processing. Benign pelvic lymph nodes showed a significantly higher SI/SNR decrease compared with malignant nodes (p < 0.0001). Inguinal lymph nodes in comparison to pelvic lymph nodes presented a reduced SI/SNR decrease (p < 0.0001). CNR did not differ significantly between benign and malignant lymph nodes. The receiver operating curve analysis yielded an area under the curve of 0.96, and the point with optimal accuracy was found at a threshold value of 13.5% SNR decrease. Overlap of SI and SNR changes between benign and malignant lymph nodes were attributed to partial voluming, lipomatosis, histiocytosis or focal lymphoreticular hyperplasia. USPIO-enhanced MRI improves the diagnostic ability of lymph node staging in normal-sized lymph nodes, although some overlap of SI/SNR-changes remained. Quantification of USPIO-dependent SNR decrease will enable the validation of this promising technique with the final goal of improving and individualizing patient care.
Resumo:
The purpose of this study was to evaluate the neuroimaging quality and accuracy of prospective real-time navigator-echo acquisition correction versus untriggered intrauterine magnetic resonance imaging (MRI) techniques. Twenty women in whom fetal motion artifacts compromised the neuroimaging quality of fetal MRI taken during the 28.7 +/- 4 week of pregnancy below diagnostic levels were additionally investigated using a navigator-triggered half-Fourier acquired single-shot turbo-spin echo (HASTE) sequence. Imaging quality was evaluated by two blinded readers applying a rating scale from 1 (not diagnostic) to 5 (excellent). Diagnostic criteria included depiction of the germinal matrix, grey and white matter, CSF, brain stem and cerebellum. Signal-difference-to-noise ratios (SDNRs) in the white matter and germinal zone were quantitatively evaluated. Imaging quality improved in 18/20 patients using the navigator echo technique (2.4 +/- 0.58 vs. 3.65 +/- 0.73 SD, p < 0.01 for all evaluation criteria). In 2/20 patients fetal movement severely impaired image quality in conventional and navigated HASTE. Navigator-echo imaging revealed additional structural brain abnormalities and confirmed diagnosis in 8/20 patients. The accuracy improved from 50% to 90%. Average SDNR increased from 0.7 +/- 7.27 to 19.83 +/- 15.71 (p < 0.01). Navigator-echo-based real-time triggering of fetal head movement is a reliable technique that can deliver diagnostic fetal MR image quality despite vigorous fetal movement.
Resumo:
The double-echo-steady-state (DESS) sequence generates two signal echoes that are characterized by a different contrast behavior. Based on these two contrasts, the underlying T2 can be calculated. For a flip-angle of 90 degrees , the calculated T2 becomes independent of T1, but with very low signal-to-noise ratio. In the present study, the estimation of cartilage T2, based on DESS with a reduced flip-angle, was investigated, with the goal of optimizing SNR, and simultaneously minimizing the error in T2. This approach was validated in phantoms and on volunteers. T2 estimations based on DESS at different flip-angles were compared with standard multiecho, spin-echo T2. Furthermore, DESS-T2 estimations were used in a volunteer and in an initial study on patients after cartilage repair of the knee. A flip-angle of 33 degrees was the best compromise for the combination of DESS-T2 mapping and morphological imaging. For this flip angle, the Pearson correlation was 0.993 in the phantom study (approximately 20% relative difference between SE-T2 and DESS-T2); and varied between 0.429 and 0.514 in the volunteer study. Measurements in patients showed comparable results for both techniques with regard to zonal assessment. This DESS-T2 approach represents an opportunity to combine morphological and quantitative cartilage MRI in a rapid one-step examination.
Resumo:
OBJECTIVE The aim of this work is to investigate and compare cardiac proton density (PD) weighted fast field echo (FFE) post-mortem magnetic resonance (PMMR) imaging with standard cardiac PMMR imaging (T1-weighted and T2-weighted turbo spin-echo (TSE)), postmortem CT (PMCT) as well as autopsy. MATERIALS AND METHODS Two human cadavers sequentially underwent cardiac PMCT and PMMR imaging (PD-weighted FFE, T1-weighted and T2-weighted TSE) and autopsy. The cardiac PMMR images were compared to each other as well as to PMCT and autopsy findings. RESULTS For the first case, cardiac PMMR exhibited a focal region of low signal in PD-weighted FFE and T2-weighted TSE images, surrounded by a signal intense rim in the T2-weighted images. T1-weighted TSE and PMCT did not appear to identify any focal abnormality. Macroscopic inspection identified a blood clot; histology confirmed this to be a thrombus with an adhering myocardial infarction. In the second case, a myocardial rupture with heart tamponade was identified in all PMMR images, located at the anterior wall of the left ventricle; PMCT excluded additional ruptures. In PD-weighted FFE and T2-weighted TSE images, it occurred hypo-intense, while resulting in small clustered hyper-intense spots in T1-weighted TSE. Autopsy confirmed the PMMR and PMCT findings. CONCLUSIONS Presented initial results have shown PD-weighted FFE to be a valuable imaging sequence in addition to traditional T2-weighted TSE imaging for blood clots and myocardial haemorrhage with clearer contrast between affected and healthy myocardium.
Resumo:
The PROPELLER (Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction) magnetic resonance imaging (MRI) technique has inherent advantages over other fast imaging methods, including robust motion correction, reduced image distortion, and resistance to off-resonance effects. These features make PROPELLER highly desirable for T2*-sensitive imaging, high-resolution diffusion imaging, and many other applications. However, PROPELLER has been predominantly implemented as a fast spin-echo (FSE) technique, which is insensitive to T2* contrast, and requires time-inefficient signal averaging to achieve adequate signal-to-noise ratio (SNR) for many applications. These issues presently constrain the potential clinical utility of FSE-based PROPELLER. ^ In this research, our aim was to extend and enhance the potential applications of PROPELLER MRI by developing a novel multiple gradient echo PROPELLER (MGREP) technique that can overcome the aforementioned limitations. The MGREP pulse sequence was designed to acquire multiple gradient-echo images simultaneously, without any increase in total scan time or RF energy deposition relative to FSE-based PROPELLER. A new parameter was also introduced for direct user-control over gradient echo spacing, to allow variable sensitivity to T2* contrast. In parallel to pulse sequence development, an improved algorithm for motion correction was also developed and evaluated against the established method through extensive simulations. The potential advantages of MGREP over FSE-based PROPELLER were illustrated via three specific applications: (1) quantitative T2* measurement, (2) time-efficient signal averaging, and (3) high-resolution diffusion imaging. Relative to the FSE-PROPELLER method, the MGREP sequence was found to yield quantitative T2* values, increase SNR by ∼40% without any increase in acquisition time or RF energy deposition, and noticeably improve image quality in high-resolution diffusion maps. In addition, the new motion algorithm was found to improve the performance considerably in motion-artifact reduction. ^ Overall, this work demonstrated a number of enhancements and extensions to existing PROPELLER techniques. The new technical capabilities of PROPELLER imaging, developed in this thesis research, are expected to serve as the foundation for further expanding the scope of PROPELLER applications. ^
Resumo:
NMR spectroscopy and relaxometry were used to investigate microemulsion formation in supercritical CO2. The droplets were stabilised by the salt of a perfluorinated polyether. Spontaneous microemulsion formation was observed over a period of 5 h in the absence of applied sheer. Time-resolved relaxation times of the surfactant tail showed a stepwise increase in mobility of the tail over this period. Conversely, the translational mobility of water confined within the droplet decreased over the same interval. This data is consistent with the gradual decrease in droplet size as time progressed. Indeed, NMR self-diffusion coefficients were used to show that droplets with a radius of approximately 5 nm were formed at equilibrium.
Resumo:
PFG-NMR was used to study the chemical exchange of linear PHEMA having a range of molecular weights with water in DMSO containing varying quantities of water. The aim was to investigate the use of PFG-NMR to study chemical exchange between a polymer with exchangeable protons and a small fast diffusing molecule to provide insight into the conformation adopted by a polymer in solution. The experimental data were simulated closely for the two-site exchange case using the Bloch equations modified for chemical exchange and diffusion. The exchange rate could be used to detect changes in polymer conformation resulting from changes in the solvent. PHEMA of MW 10 000 showed significant time-dependent changes in exchange rate, resulting from preferential solvation of the OH sites by water, and subsequent conformational changes which altered accessibility of the OH sites to water. This behavior was not observed for larger MW PHEMA, which adopted a stable conformation immediately. Large changes in the exchange rate were not reflected in changes to the hydrodynamic radius, suggesting that a minimal overall change in the chain dimensions occurred. DMSO was found to be a poor solvent for PHEMA, which adopts a compact conformation in DMSO. This work has demonstrated that PFG-NMR is a sensitive method for detecting subtle changes in polymer conformation in polymers with exchangeable protons.
Resumo:
A imagem por ressonância magnética (IRM) é o método de diagnóstico por imagem não invasivo mais sensível para avaliar as partes moles, particularmente o encéfalo, porém trata-se de uma técnica onerosa. O método fundamenta-se no fenômeno da ressonância magnética nuclear que ocorre quando núcleos atômicos com propriedades magnéticas presentes no corpo são submetidos a um campo magnético intenso, sendo posteriormente excitados por energia de radiofrequência e gerando, por sua vez, um sinal de onda de radiofrequência capaz de ser captado por uma antena receptora, passando por um processo matemático, chamado Transformada de Fourier, para posterior formação da imagem. Esse estudo objetivou realizar 10 exames completos da cabeça em cadáveres de cães normais à IRM e confeccionar um Atlas com as estruturas identificadas. As imagens foram adquiridas em um aparelho de ressonância magnética Gyroscan S15/HP Philips com campo magnético de 1,5Tesla. Os cadáveres foram posicionados com a cabeça no interior de uma bobina de cabeça humana e foram submetidos a cortes iniciais sagitais a partir de onde se planejou os cortes transversais e dorsais nas sequências de pulso spin-eco T1, T2 e DP. Em T1 utilizou-se TR=400ms e TE=30ms, T2 utilizou-se TR=2000ms e TE=80ms e na DP utilizou-se TR=2000ms e TE=30ms. A espessura do corte foi de 4mm, o número de médias foi igual a 2, a matriz foi de 256x256, o fator foi igual a 1,0 e o campo de visão foi de 14cm. A duração do exame completo da cabeça foi de 74,5minutos. As imagens obtidas com as sequências utilizadas e com a bobina de cabeça humana foram de boa qualidade. Em T1 a gordura tornou-se hiperintensa e o líquido hipointenso. Em T2 a gordura ficou menos hiperintensa e o líquido hiperintenso. A cortical óssea e o ar foram hipointensos em todas as sequências utilizadas devido a baixa densidade de prótons. A sequência DP mostrou o melhor contraste entre a substância branca e cinzenta quando comparada a T2 e a T1. T2 evidenciou o líquido cefalorraquidiano tornando possível a distinção dos sulcos e giros cerebrais. Através do exame de IRM foi possível, pelo contraste, identificar as estruturas ósseas componentes da arquitetura da região, músculos, grandes vasos venosos e arteriais e estruturas do sistema nervoso central, além de elementos do sistema digestório, respiratório e estruturas dos olhos entre outras. Nesse estudo as IRM adquiridas nas sequências T1, DP e T2 foram complementares para o estudo dos aspectos anatômicos da cabeça de cães demonstrando-os com riqueza de detalhes. O tempo requerido para o exame completo da cabeça é compátivel para uso em animais vivos desde que devidamente anestesiados e controlados. Os resultados obtidos por esse trabalho abrem caminho em nosso meio, para o estudo de animais vivos e para o início da investigação de doenças, principalmente as de origem neurológica, visto ser esta técnica excelente para a visibilização do encéfalo.