991 resultados para PDE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We shall consider the weak formulation of a linear elliptic model problem with discontinuous Dirichlet boundary conditions. Since such problems are typically not well-defined in the standard H^1-H^1 setting, we will introduce a suitable saddle point formulation in terms of weighted Sobolev spaces. Furthermore, we will discuss the numerical solution of such problems. Specifically, we employ an hp-discontinuous Galerkin method and derive an L^2-norm a posteriori error estimate. Numerical experiments demonstrate the effectiveness of the proposed error indicator in both the h- and hp-version setting. Indeed, in the latter case exponential convergence of the error is attained as the mesh is adaptively refined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(-)-CGP12177 is a non-conventional partial agonist that causes modest and transient increases of contractile force in human atrial trabeculae (Kaumann and Molenaar, 2008). These effects are markedly increased and maintained by inhibition of phosphodiesterase PDE3. As verified with recombinant receptors, the cardiostimulant effect of (-)-CGP12177 is mediated through a site at the beta1-adrenoceptor with lower affinity (beta1LAR) compared to the site through which (-)-CGP12177 antagonizes the effects of catecholamines (beta1HAR). However, in a recent report it was proposed that the positive inotropic effects of CGP12177 are mediated through beta3-adrenoceptors (Skeberdis et al 2008). We therefore investigated whether the effects of (-)-CGP12177 on human atrial trabeculae are antagonized by the beta3-adrenoceptor-selective antagonist L-748,337 (1 microM). (-)-CGP12177 (200 nM) caused a stable increase in force which was significantly reduced by the addition of (-)-bupranolol (1 microM), P = 0.002, (basal 4.45 ± 0.78 mN, IBMX (PDE inhibitor) 5.47 ± 1.01 mN, (-)-CGP12177 9.34 ± 1.33 mN, (-)-bupranolol 5.79 ± 1.08 mN, n = 6) but not affected by the addition of L-748,337 (1 microM), P = 0.12, (basal 4.48 ± 1.32 mN, IBMX 7.15 ± 2.28 mN, (-)-CGP12177 12.51 ± 3.71 mN, L-748,337 10.90 ± 3.49 mN, n = 6). Cumulative concentration-effect curves for (-)-CGP12177 were not shifted to the right by L-748,337 (1 microM). The –logEC50M values of (-)-CGP12177 in the absence and presence of L-748,337 were 7.21±0.09 and 7.41±0.13, respectively (data from 25 trabeculae from 8 patients, P=0.2) The positive inotropic effects of (-)-CGP12177 (IBMX present) were not antagonized by L-748,337 but were blunted by (-)-bupranolol (1 microM). The results rule out an involvement of beta3-adrenoceptors in the positive inotropic effects (-)-CGP12177 in human right atrial myocardium and are consistent with mediation through beta1LAR. Kaumann A and Molenaar P (2008) Pharmacol Ther 118, 303-336 Skeberdis VA et al (2008) J Clin Invest, 118, 3219-3227

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many industrial processes and systems can be modelled mathematically by a set of Partial Differential Equations (PDEs). Finding a solution to such a PDF model is essential for system design, simulation, and process control purpose. However, major difficulties appear when solving PDEs with singularity. Traditional numerical methods, such as finite difference, finite element, and polynomial based orthogonal collocation, not only have limitations to fully capture the process dynamics but also demand enormous computation power due to the large number of elements or mesh points for accommodation of sharp variations. To tackle this challenging problem, wavelet based approaches and high resolution methods have been recently developed with successful applications to a fixedbed adsorption column model. Our investigation has shown that recent advances in wavelet based approaches and high resolution methods have the potential to be adopted for solving more complicated dynamic system models. This chapter will highlight the successful applications of these new methods in solving complex models of simulated-moving-bed (SMB) chromatographic processes. A SMB process is a distributed parameter system and can be mathematically described by a set of partial/ordinary differential equations and algebraic equations. These equations are highly coupled; experience wave propagations with steep front, and require significant numerical effort to solve. To demonstrate the numerical computing power of the wavelet based approaches and high resolution methods, a single column chromatographic process modelled by a Transport-Dispersive-Equilibrium linear model is investigated first. Numerical solutions from the upwind-1 finite difference, wavelet-collocation, and high resolution methods are evaluated by quantitative comparisons with the analytical solution for a range of Peclet numbers. After that, the advantages of the wavelet based approaches and high resolution methods are further demonstrated through applications to a dynamic SMB model for an enantiomers separation process. This research has revealed that for a PDE system with a low Peclet number, all existing numerical methods work well, but the upwind finite difference method consumes the most time for the same degree of accuracy of the numerical solution. The high resolution method provides an accurate numerical solution for a PDE system with a medium Peclet number. The wavelet collocation method is capable of catching up steep changes in the solution, and thus can be used for solving PDE models with high singularity. For the complex SMB system models under consideration, both the wavelet based approaches and high resolution methods are good candidates in terms of computation demand and prediction accuracy on the steep front. The high resolution methods have shown better stability in achieving steady state in the specific case studied in this Chapter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, many new applications in engineering and science are governed by a series of fractional partial differential equations (FPDEs). Unlike the normal partial differential equations (PDEs), the differential order in a FPDE is with a fractional order, which will lead to new challenges for numerical simulation, because most existing numerical simulation techniques are developed for the PDE with an integer differential order. The current dominant numerical method for FPDEs is Finite Difference Method (FDM), which is usually difficult to handle a complex problem domain, and also hard to use irregular nodal distribution. This paper aims to develop an implicit meshless approach based on the moving least squares (MLS) approximation for numerical simulation of fractional advection-diffusion equations (FADE), which is a typical FPDE. The discrete system of equations is obtained by using the MLS meshless shape functions and the meshless strong-forms. The stability and convergence related to the time discretization of this approach are then discussed and theoretically proven. Several numerical examples with different problem domains and different nodal distributions are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. It is concluded that the present meshless formulation is very effective for the modeling and simulation of the FADE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a continuous time model for election timing in a Majoritarian Parliamentary System where the government maintains a constitutional right to call an early election. Our model is based on the two-party-preferred data that measure the popularity of the government and the opposition over time. We describe the poll process by a Stochastic Differential Equation (SDE) and use a martingale approach to derive a Partial Differential Equation (PDE) for the government’s expected remaining life in office. A comparison is made between a three-year and a four-year maximum term and we also provide the exercise boundary for calling an election. Impacts on changes in parameters in the SDE, the probability of winning the election and maximum terms on the call exercise boundaries are discussed and analysed. An application of our model to the Australian Federal Election for House of Representatives is also given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concept of local accumulation time (LAT) was introduced by Berezhkovskii and coworkers in 2010–2011 to give a finite measure of the time required for the transient solution of a reaction–diffusion equation to approach the steady–state solution (Biophys J. 99, L59 (2010); Phys Rev E. 83, 051906 (2011)). Such a measure is referred to as a critical time. Here, we show that LAT is, in fact, identical to the concept of mean action time (MAT) that was first introduced by McNabb in 1991 (IMA J Appl Math. 47, 193 (1991)). Although McNabb’s initial argument was motivated by considering the mean particle lifetime (MPLT) for a linear death process, he applied the ideas to study diffusion. We extend the work of these authors by deriving expressions for the MAT for a general one–dimensional linear advection–diffusion–reaction problem. Using a combination of continuum and discrete approaches, we show that MAT and MPLT are equivalent for certain uniform–to-uniform transitions; these results provide a practical interpretation for MAT, by directly linking the stochastic microscopic processes to a meaningful macroscopic timescale. We find that for more general transitions, the equivalence between MAT and MPLT does not hold. Unlike other critical time definitions, we show that it is possible to evaluate the MAT without solving the underlying partial differential equation (pde). This makes MAT a simple and attractive quantity for practical situations. Finally, our work explores the accuracy of certain approximations derived using the MAT, showing that useful approximations for nonlinear kinetic processes can be obtained, again without treating the governing pde directly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A standard method for the numerical solution of partial differential equations (PDEs) is the method of lines. In this approach the PDE is discretised in space using �finite di�fferences or similar techniques, and the resulting semidiscrete problem in time is integrated using an initial value problem solver. A significant challenge when applying the method of lines to fractional PDEs is that the non-local nature of the fractional derivatives results in a discretised system where each equation involves contributions from many (possibly every) spatial node(s). This has important consequences for the effi�ciency of the numerical solver. First, since the cost of evaluating the discrete equations is high, it is essential to minimise the number of evaluations required to advance the solution in time. Second, since the Jacobian matrix of the system is dense (partially or fully), methods that avoid the need to form and factorise this matrix are preferred. In this paper, we consider a nonlinear two-sided space-fractional di�ffusion equation in one spatial dimension. A key contribution of this paper is to demonstrate how an eff�ective preconditioner is crucial for improving the effi�ciency of the method of lines for solving this equation. In particular, we show how to construct suitable banded approximations to the system Jacobian for preconditioning purposes that permit high orders and large stepsizes to be used in the temporal integration, without requiring dense matrices to be formed. The results of numerical experiments are presented that demonstrate the effectiveness of this approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2010 Berezhkovskii and coworkers introduced the concept of local accumulation time (LAT) as a finite measure of the time required for the transient solution of a reaction diffusion equation to effectively reach steady state(Biophys J. 99, L59 (2010); Phys Rev E. 83, 051906 (2011)). Berezhkovskii’s approach is a particular application of the concept of mean action time (MAT) that was introduced previously by McNabb (IMA J Appl Math. 47, 193 (1991)). Here, we generalize these previous results by presenting a framework to calculate the MAT, as well as the higher moments, which we call the moments of action. The second moment is the variance of action time; the third moment is related to the skew of action time, and so on. We consider a general transition from some initial condition to an associated steady state for a one–dimensional linear advection–diffusion–reaction partial differential equation(PDE). Our results indicate that it is possible to solve for the moments of action exactly without requiring the transient solution of the PDE. We present specific examples that highlight potential weaknesses of previous studies that have considered the MAT alone without considering higher moments. Finally, we also provide a meaningful interpretation of the moments of action by presenting simulation results from a discrete random walk model together with some analysis of the particle lifetime distribution. This work shows that the moments of action are identical to the moments of the particle lifetime distribution for certain transitions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a recent paper, Gordon, Muratov, and Shvartsman studied a partial differential equation (PDE) model describing radially symmetric diffusion and degradation in two and three dimensions. They paid particular attention to the local accumulation time (LAT), also known in the literature as the mean action time, which is a spatially dependent timescale that can be used to provide an estimate of the time required for the transient solution to effectively reach steady state. They presented exact results for three-dimensional applications and gave approximate results for the two-dimensional analogue. Here we make two generalizations of Gordon, Muratov, and Shvartsman’s work: (i) we present an exact expression for the LAT in any dimension and (ii) we present an exact expression for the variance of the distribution. The variance provides useful information regarding the spread about the mean that is not captured by the LAT. We conclude by describing further extensions of the model that were not considered by Gordon,Muratov, and Shvartsman. We have found that exact expressions for the LAT can also be derived for these important extensions...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

LiFePO4 is a commercially available battery material with good theoretical discharge capacity, excellent cycle life and increased safety compared with competing Li-ion chemistries. It has been the focus of considerable experimental and theoretical scrutiny in the past decade, resulting in LiFePO4 cathodes that perform well at high discharge rates. This scrutiny has raised several questions about the behaviour of LiFePO4 material during charge and discharge. In contrast to many other battery chemistries that intercalate homogeneously, LiFePO4 can phase-separate into highly and lowly lithiated phases, with intercalation proceeding by advancing an interface between these two phases. The main objective of this thesis is to construct mathematical models of LiFePO4 cathodes that can be validated against experimental discharge curves. This is in an attempt to understand some of the multi-scale dynamics of LiFePO4 cathodes that can be difficult to determine experimentally. The first section of this thesis constructs a three-scale mathematical model of LiFePO4 cathodes that uses a simple Stefan problem (which has been used previously in the literature) to describe the assumed phase-change. LiFePO4 crystals have been observed agglomerating in cathodes to form a porous collection of crystals and this morphology motivates the use of three size-scales in the model. The multi-scale model developed validates well against experimental data and this validated model is then used to examine the role of manufacturing parameters (including the agglomerate radius) on battery performance. The remainder of the thesis is concerned with investigating phase-field models as a replacement for the aforementioned Stefan problem. Phase-field models have recently been used in LiFePO4 and are a far more accurate representation of experimentally observed crystal-scale behaviour. They are based around the Cahn-Hilliard-reaction (CHR) IBVP, a fourth-order PDE with electrochemical (flux) boundary conditions that is very stiff and possesses multiple time and space scales. Numerical solutions to the CHR IBVP can be difficult to compute and hence a least-squares based Finite Volume Method (FVM) is developed for discretising both the full CHR IBVP and the more traditional Cahn-Hilliard IBVP. Phase-field models are subject to two main physicality constraints and the numerical scheme presented performs well under these constraints. This least-squares based FVM is then used to simulate the discharge of individual crystals of LiFePO4 in two dimensions. This discharge is subject to isotropic Li+ diffusion, based on experimental evidence that suggests the normally orthotropic transport of Li+ in LiFePO4 may become more isotropic in the presence of lattice defects. Numerical investigation shows that two-dimensional Li+ transport results in crystals that phase-separate, even at very high discharge rates. This is very different from results shown in the literature, where phase-separation in LiFePO4 crystals is suppressed during discharge with orthotropic Li+ transport. Finally, the three-scale cathodic model used at the beginning of the thesis is modified to simulate modern, high-rate LiFePO4 cathodes. High-rate cathodes typically do not contain (large) agglomerates and therefore a two-scale model is developed. The Stefan problem used previously is also replaced with the phase-field models examined in earlier chapters. The results from this model are then compared with experimental data and fit poorly, though a significant parameter regime could not be investigated numerically. Many-particle effects however, are evident in the simulated discharges, which match the conclusions of recent literature. These effects result in crystals that are subject to local currents very different from the discharge rate applied to the cathode, which impacts the phase-separating behaviour of the crystals and raises questions about the validity of using cathodic-scale experimental measurements in order to determine crystal-scale behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell migration is a behaviour critical to many key biological effects, including wound healing, cancerous cell invasion and morphogenesis, the development of an organism from an embryo. However, given that each of these situations is distinctly different and cells are extremely complicated biological objects, interest lies in more basic experiments which seek to remove conflating factors and present a less complex environment within which cell migration can be experimentally examined. These include in vitro studies like the scratch assay or circle migration assay, and ex vivo studies like the colonisation of the hindgut by neural crest cells. The reduced complexity of these experiments also makes them much more enticing as problems to mathematically model, like done here. The primary goal of the mathematical models used in this thesis is to shed light on which cellular behaviours work to generate the travelling waves of invasion observed in these experiments, and to explore how variations in these behaviours can potentially predict differences in this invasive pattern which are experimentally observed when cell types or chemical environment are changed. Relevant literature has already identified the difficulty of distinguishing between these behaviours when using traditional mathematical biology techniques operating on a macroscopic scale, and so here a sophisticated individual-cell-level model, an extension of the Cellular Potts Model (CPM), is been constructed and used to model a scratch assay experiment. This model includes a novel mechanism for dealing with cell proliferations that allowed for the differing properties of quiescent and proliferative cells to be implemented into their behaviour. This model is considered both for its predictive power and used to make comparisons with the travelling waves which result in more traditional macroscopic simulations. These comparisons demonstrate a surprising amount of agreement between the two modelling frameworks, and suggest further novel modifications to the CPM that would allow it to better model cell migration. Considerations of the model’s behaviour are used to argue that the dominant effect governing cell migration (random motility or signal-driven taxis) likely depends on the sort of invasion demonstrated by cells, as easily seen by microscopic photography. Additionally, a scratch assay simulated on a non-homogeneous domain consisting of a ’fast’ and ’slow’ region is also used to further differentiate between these different potential cell motility behaviours. A heterogeneous domain is a novel situation which has not been considered mathematically in this context, nor has it been constructed experimentally to the best of the candidate’s knowledge. Thus this problem serves as a thought experiment used to test the conclusions arising from the simulations on homogeneous domains, and to suggest what might be observed should this non-homogeneous assay situation be experimentally realised. Non-intuitive cell invasion patterns are predicted for diffusely-invading cells which respond to a cell-consumed signal or nutrient, contrasted with rather expected behaviour in the case of random-motility-driven invasion. The potential experimental observation of these behaviours is demonstrated by the individual-cell-level model used in this thesis, which does agree with the PDE model in predicting these unexpected invasion patterns. In the interest of examining such a case of a non-homogeneous domain experimentally, some brief suggestion is made as to how this could be achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and purpose Phosphodiesterases PDE3 and/or PDE4 control ventricular effects of catecholamines in several species but their relative effects in failing human ventricle are unknown. We investigated whether the PDE3-selective inhibitor cilostamide (0.3-1μM) or PDE4 inhibitor rolipram (1-10μM) modified the positive inotropic and lusitropic effects of catecholamines in human failing myocardium. Experimental approach Right and left ventricular trabeculae from freshly explanted hearts of 5 non-β-blocker-treated and 15 metoprolol-treated patients with terminal heart failure were paced to contract at 1Hz. The effects of (-)-noradrenaline, mediated through β1-adrenoceptors (β2-adrenoceptors blocked with ICI118551), and (-)-adrenaline, mediated through β2-adrenoceptors (β1-adrenoceptors blocked with CGP20712A), were assessed in the absence and presence of PDE inhibitors. Catecholamine potencies were estimated from –logEC50s. Key results Cilostamide did not significantly potentiate the inotropic effects of the catecholamines in non-β-blocker-treated patients. Cilostamide caused greater potentiation (P=0.037) of the positive inotropic effects of (-)-adrenaline (0.78±0.12 log units) than (-)-noradrenaline (0.47±0.12 log units) in metoprolol-treated patients. Lusitropic effects of the catecholamines were also potentiated by cilostamide. Rolipram did not affect the inotropic and lusitropic potencies of (-)-noradrenaline or (-)-adrenaline on right and left ventricular trabeculae from metoprolol-treated patients. Conclusions and implications Metoprolol induces a control by PDE3 of ventricular effects mediated through both β1- and β2-adrenoceptors, thereby further reducing sympathetic cardiostimulation in patients with terminal heart failure. Concurrent therapy with a PDE3 blocker and metoprolol could conceivably facilitate cardiostimulation evoked by adrenaline through β2-adrenoceptors. PDE4 does not appear to reduce inotropic and lusitropic effects of catecholamines in failing human ventricle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Similarity solutions are carried out for flow of power law non-Newtonian fluid film on unsteady stretching surface subjected to constant heat flux. Free convection heat transfer induces thermal boundary layer within a semi-infinite layer of Boussinesq fluid. The nonlinear coupled partial differential equations (PDE) governing the flow and the boundary conditions are converted to a system of ordinary differential equations (ODE) using two-parameter groups. This technique reduces the number of independent variables by two, and finally the obtained ordinary differential equations are solved numerically for the temperature and velocity using the shooting method. The thermal and velocity boundary layers are studied by the means of Prandtl number and non-Newtonian power index plotted in curves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article reports on the organisation and main events of the 15th World Congress of the World Council of Comparative Education Societies (WCCES), held in Buenos Aires, Argentina, in 2013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

These news items describe: (1) a book award won by Peter Mayo and Leona English (2) the theme of the next issue of 'Postcolonial Directions in Education', and (3) two conference visits made by the author: 'Quality in the classroom', in Kathmandu, Nepal, 2013, and the AERA conference in San Francisco, 2013.