924 resultados para PARTITION-COEFFICIENT
Resumo:
In this work, a series of 10 structural procaine analogs have been synthesized in order to investigate the structural features affecting the stability of ion pair formation and its influence on the lipophilicity of ionizable compounds. The structural variation within this series was focused on the terminal nitrogen substituents and on the intermediate chain linkage nature. The hydrophobic parameters log P(n) and log P(i) (partition coefficient of the neutral and ionic species, respectively), as well as the ionization constants pK(a) and pK(a)(oct), were obtained from log D-pH profiles measured at pH values ranging from 2 to 12. The difference between log P(i) and log P(n) values (i.e. difflog P) of each prepared compound was considered a measure of the stability of ion pair formation. In this set, the difflog P values varied nearly over one log unit, ranging from -2.40 to -3.37. It has been observed that the presence of hydrogen bonding groups (especially donor) and low steric hindrance around the terminal amine ionizable group increases the relative lipophilicity of the ionic species as compared to the corresponding neutral species. These results were interpreted as due to the increased stability of ion pairs of the compounds bearing these structural features. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Cannabinoid compounds have widely been employed because of its medicinal and psychotropic properties. These compounds are isolated from Cannabis sativa (or marijuana) and are used in several medical treatments, such as glaucoma, nausea associated to chemotherapy, pain and many other situations. More recently, its use as appetite stimulant has been indicated in patients with cachexia or AIDS. In this work, the influence of several molecular descriptors on the psychoactivity of 50 cannabinoid compounds is analyzed aiming one obtain a model able to predict the psychoactivity of new cannabinoids. For this purpose, initially, the selection of descriptors was carried out using the Fisher`s weight, the correlation matrix among the calculated variables and principal component analysis. From these analyses, the following descriptors have been considered more relevant: E(LUMO) (energy of the lowest unoccupied molecular orbital), Log P (logarithm of the partition coefficient), VC4 (volume of the substituent at the C4 position) and LP1 (Lovasz-Pelikan index, a molecular branching index). To follow, two neural network models were used to construct a more adequate model for classifying new cannabinoid compounds. The first model employed was multi-layer perceptrons, with algorithm back-propagation, and the second model used was the Kohonen network. The results obtained from both networks were compared and showed that both techniques presented a high percentage of correctness to discriminate psychoactive and psychoinactive compounds. However, the Kohonen network was superior to multi-layer perceptrons.
Resumo:
In this work, a micellar system of benzathine penicillin G (BPG) in sodium deoxycholate (NaDC) was developed and evaluated physicochemically. The solubility profile of the drug in water and buffer solutions at various pH was determined, as well as its n-octanol/water partition coefficient. The Critical Micellar Concentration of NaDC and its ability to incorporate BPG were also assessed. The study was carried out at low and high ionic strength which was adjusted by the addition of sodium chloride. The results demonstrated the ability of the micellar system to incorporate BPG, as well as to increase its apparent solubility in water. The enhancement of the solubility of BPG by the presence of NaDC micelles could be analyzed quantitatively within the framework of the pseudo-phase model. Concentration analysis showed that the micellar system could attain up to 90% incorporation of BPG. The incorporated drug is expected to exhibit improved stability, since the antibiotic enclosed in the hydrophobic core of micelles is rather shielded from the aqueous external environment
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Topliss method was used to guide a synthetic path in support of drug discovery efforts toward the identification of potent antimycobacterial agents. Salicylic acid and its derivatives, p-chloro, p-methoxy, and m-chlorosalicylic acid, exemplify a series of synthetic compounds whose minimum inhibitory concentrations for a strain of Mycobacterium were determined and compared to those of the reference drug, p-aminosalicylic acid. Several physicochemical descriptors (including Hammett's sigma constant, ionization constant, dipole moment, Hansch constant, calculated partition coefficient, Sterimol-L and -B-4 and molecular volume) were considered to elucidate structure-activity relationships. Molecular electrostatic potential and molecular dipole moment maps were also calculated using the AM1 semi-empirical method. Among the new derivatives, m-chlorosalicylic acid showed the lowest minimum inhibitory concentration. The overall results suggest that both physicochemical properties and electronic features may influence the biological activity of this series of antimycobacterial agents and thus should be considered in designing new p-aminosalicylic acid analogs.
Resumo:
The partitioning of Green Fluorescent Protein (GFP) in poly(ethylene glycol)/Na-poly(acrylate) aqueous two-phase systems (PEG/NaPA-ATPS) has been investigated. The aqueous two-phase systems are formed by mixing the polymers with a salt and a protein solution. The protein partitioning in the two-phase system was investigated at 25 degrees C. The concentration of the GFP was measured by fluorimetry. It was found that the partitioning of GFP depends on the salt type, pH and concentration of PEG. The data indicates that GFP partitions more strongly to the PEG phase in presence of Na2SO4 relative to NaCl. Furthermore, the GFP partitions more to the PEG phase at higher pH. The partition to the PEG phase is strongly favoured in systems with larger tie-line lengths (i.e. systems with higher polymer concentrations). The molecular weight of PEG is important since the partition coefficient (K) of GFP gradually decreases with increasing PEG size, from K ca. 300-400 for PEG 400 to K equal to 1.19 for PEG 8000. A separation process was developed where GFP was separated from a homogenate in two extraction steps: the GFP is first partitioned to the PEG phase in a PEG 3000/NaPA 8000 system containing 3 wt% Na2SO4, where the K value of GFP was 8. The GFP is then re-extracted to a salt phase formed by mixing the previous top-phase with a Na2SO4 solution. The K-value of GFP in this back-extraction was 0.22. The total recovery based on the start material was 74%. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Microemulsions (ME) containing soya phosphatidylcholine (SPC/polyoxyethylenglycerol trihydroxystearate 40 (EU)/sodium oleate (SO) as surfactant cholesterol (CHO) as oil phase and aqueous buffer were studied. Pseudo-ternary phase diagrams of the investigated systems were obtained at constant SPC/EU/SO weight ratio 3.5:3.5:3.0 by titration, in order to characterize the proportions between the components to form clear systems. The dynamic light scattering results showed that the size of the oil droplets decreases significantly with the ratio of surfactant/oil phase added to system. Depending on the composition ME system could exhibit a thixotropic behavior. The apparent viscosity increased 25- and 13-folds with cholesterol concentration for drug-free and drug-load ME, respectively. It was also verified that the octanol/aqueous buffer partition coefficient (K-O/B) of doxorubicin (DOX) was pH dependent increasing abruptly above pH 6.0. It was possible to incorporate 2.24 mg/ml of DOX into ME. The incorporation of DOX in the ME systems increased the droplets size for all surfactant concentrations used in the system. The results suggest that DOX interacts with the microstructure of the ME at the studied pH increasing significantly the drug solubility. It was possible to conclude that the investigated ME can be a very promising vehicle as drug-carrier for administration of doxorubicin. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work, a micellar system of benzathine penicillin G (BPG) in sodium deoxycholate (NaDC) was developed and evaluated physicochemically. The solubility profile of the drug in water and buffer solutions at various pH was determined, as well as its n-octanol/water partition coefficient. The Critical Micellar Concentration of NaDC and its ability to incorporate BPG were also assessed. The study was carried out at low and high ionic strength which was adjusted by the addition of sodium chloride. The results demonstrated the ability of the micellar system to incorporate BPG, as well as to increase its apparent solubility in water. The enhancement of the solubility of BPG by the presence of NaDC micelles could be analyzed quantitatively within the framework of the pseudo-phase model. Concentration analysis showed that the micellar system could attain up to 90% incorporation of BPG. The incorporated drug is expected to exhibit improved stability, since the antibiotic enclosed in the hydrophobic core of micelles is rather shielded from the aqueous external environment.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Avaliação da influência da natureza da matriz sólida sobre a extração supercrítica de óleos vegetais
Resumo:
A extração de substâncias de substratos sólidos tanto a baixas como a altas pressões envolve pelo menos duas fases, uma sólida e outra fluida. O conteúdo de soluto em cada fase é expresso em termos do volume da fase e/ou do volume do solvente. Então para modelar a transferência de massa interfacial, é necessário um coeficiente de partição. Em geral a forma mais simples para tratar o problema é modelar as fases separadamente. O mecanismo de transferência de massa predominante pode variar de sistema para sistema. Para alguns substratos a maior resistência pode estar na fase sólida e para outros ela está na fase fluida. Como na interface as concentrações referentes a cada fase são representadas por grandezas diferentes, as fases têm de ser modeladas separadamente. No entanto, dependendo do sistema, pode haver um mecanismo de transferência predominando sobre o outro e, muitos efeitos podem ser desprezados para a simplificação do modelo. A utilização de modelos matemáticos mais simples requer uma combinação das variáveis na definição de parâmetros mais abrangentes que possam representar o fenômeno. Neste trabalho as curvas de extração foram ajustadas a um modelo que descreve a transferência de massa interfacial como uma cinética de primeira ordem, tendo a constante da velocidade de extração único parâmetro de ajuste. Propõe-se que este parâmetro de ajuste depende da solubilidade do soluto no solvente supercrítico e das características do substrato solido. Para isto foram feitos experimentos de extração com babaçu, açaí em pó e polpa de pupunha, usando dióxido de carbono supercrítico nas condições de 20, 25 e 30 MPa a uma temperatura de 50 ºC. Os resultados mostraram que os dados experimentais se ajustam bem a um modelo com uma constante característica de cada material, com valores 4,1983 x 10-5 m/kg∙s para o babaçu, 4,2258 x 10-5 m/kg∙s para a pupunha e 3,9115 x 10-5 m/kg∙s para o açaí em pó.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)