984 resultados para Oxidized LDL


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we analyzed the effect of aerobic exercise training (AET) and of a single bout of exercise on plasma oxidative stress and on antioxidant defenses in type 2 diabetes mellitus (DM) and in healthy control subjects (C). DM and C did not differ regarding triglycerides, high-density lipoprotein cholesterol (HDL-c), insulin, and HOMA index at baseline and after AET. To measure the lag time for low-density lipoprotein (LDL) oxidation (LAG) and the maximal rate of conjugated diene formation (MCD), participants` plasma HDL(2) and HDL(3) were incubated with LDL from pooled healthy donors` plasma. In the presence of HDL(3), both LAG and MCD were similar in C and DM, but only in DM did AET improve LAG and reduce MCD. In the presence of HDL(2), the lower baseline LAG in DM equaled C after AET. MCD was unchanged in DM after AET, but was lower than C only after AET. Furthermore, after AET plasma thiobarbituric acid-reactive substances were reduced only in DM subjects. Despite not modifying the total plasma antioxidant status and serum paraoxonase-1 activity in both groups, AET lowered the plasma lipid peroxides, corrected the HDL(2), and improved the HDL(3) antioxidant efficiency in DM independent of the changes in blood glucose, insulin, and plasma HDL concentration and composition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

RESUMO:Introdução: Reviu-se o conhecimento epidemiológico, fisiopatológico e clínico atual sobre a doença coronária, da sua génese até ao evento agudo, o Enfarte Agudo do Miocárdio (EAM). Valorizou-se, em especial, a teoria inflamatória da aterosclerose, que foi objeto de grandes desenvolvimentos na última década. Marcadores de instabilidade da placa aterosclerótica coronária: Aprofundou-se o conhecimento da placa aterosclerótica coronária instável. Descreveram-se detalhadamente os biomarcadores clínicos e laboratoriais associados à instabilidade da placa, com particular ênfase nos mecanismos inflamatórios. Objetivos:Estão divididos em dois pontos fundamentais:(1) Estudar em doentes com EAM a relação existente entre as moléculas inflamatórias: Interleucina-6 (IL-6), Fator de Necrose Tumoral-α (TNF-α) e Metaloproteinase de Matriz-3 (MMP3), não usados em contexto clínico, com um marcador inflamatório já em uso clínico: a Proteína C-Reativa ultrassensível (hs-CRP). Avaliar a relação de todas as moléculas inflamatórias com um biomarcador de lesão miocárdica: a Troponina Cardíaca I (cTnI). (2) Avaliar, no mesmo contexto de EAM, a Resposta de Fase Aguda (RFA) . Pretende-se demonstrar o impacto deste fenómeno, com repercussão clínica generalizada, no perfil lipídico e nos biomarcadores inflamatórios dos doentes. Métodos:(1) Estudo observacional prospetivo de doentes admitidos consecutivamente por EAM (grupo EAM) numa única unidade coronária, após exclusão de trauma ou infeção. Doseamento no sangue periférico, na admissão, de IL-6, TNF-α, MMP3, hs-CRP e cTnI. Este último biomarcador foi valorizado também nos valores séricos obtidos 6-9 horas depois. Procedeu-se a correlação linear (coeficiente de Pearson, de Rho-Spearman e determinação do R2) entre os 3 marcadores estudados com os valores de hs-CRP e de cTnI (valores da admissão e 6 a 9 horas após). Efetuou-se o cálculo dos coeficientes de regressão linear múltipla entre cTnI da admissão e cTnI 6-9h após, com o conjunto dos fatores inflamatórios estudados. (2) Estudo caso-controlo entre o grupo EAM e uma população aleatória de doentes seguidos em consulta de cardiologia, após exclusão de eventos cardiovasculares de qualquer território (grupo controlo) e também sem infeção ou trauma. Foram doseados os mesmos marcadores inflamatórios no grupo controlo e no grupo EAM. Nos dois grupos dosearam-se, ainda, as lipoproteínas: Colesterol total (CT), Colesterol HDL (HDLc), com as suas subfrações 2 e 3 (HDL 2 e HDL3), Colesterol LDL oxidado (LDLox),Triglicéridos (TG), Lipoproteína (a) [Lp(a)], Apolipoproteína A1 (ApoA1), Apolipoproteína B (ApoB) e Apolipoproteína E (ApoE). Definiram-se, em cada grupo, os dados demográficos, fatores de risco clássicos, terapêutica cardiovascular e o uso de anti-inflamatórios. Procedeu-se a análise multivariada em relação aos dados demográficos, fatores de risco e à terapêutica basal. Compararam-se as distribuições destas mesmas caraterísticas entre os dois grupos, assim como os valores séricos respetivos para as lipoproteínas estudadas. Procedeu-se à correlação entre as moléculas inflamatórias e as lipoproteínas, para todos os doentes estudados. Encontraram-se os coeficientes de regressão linear múltipla entre cada marcador inflamatório e o conjunto das moléculas lipídicas, por grupo. Finalmente, efetuou-se a comparação estatística entre os marcadores inflamatórios do grupo controlo e os marcadores inflamatórios do grupo EAM. Resultados: (1) Correlações encontradas, respetivamente, Pearson, Rho-Spearman e regressão-R2: IL-6/hs-CRP 0,549, p<0,001; 0,429, p=0,001; 0,302, p<0,001; MMP 3/hsCRP 0,325, p=0,014; 0,171, p=0,202; 0,106, p=0,014; TNF-α/hs-CRP 0,261, p=0,050; 0,315, p=0,017; 0,068, p=0.050; IL-6/cTnI admissão 0,486, p<0,001; 0,483, p<0,001; 0,236, p<0,001; MMP3/cTnI admissão 0,218, p=0,103; 0,146, p=0,278; 0,048, p=0,103; TNF-α/cTnI admissão 0,444, p=0,001; 0,380, p=0,004; 0,197, p=0,001; IL-6/cTnI 6-9h 0,676, p<0,001; 0,623, p<0,001; 0,456, p<0,01; MMP3/cTnI 6-9h 0,524, p=0,001; 0,149, p=0,270; 0,275, p<0,001; TNF-α/cTnI 6-9h 0,428, p=0,001, 0,452, p<0,001, 0,183, p<0,001. A regressão linear múltipla cTnI admissão/marcadores inflamatórios produziu: (R=0,638, R2=0,407) p<0,001 e cTnI 6-9h/marcadores inflamatórios (R=0,780, R2=0,609) p<0,001. (2) Significância da análise multivariada para idade (p=0,029), IMC>30 (p=0.070), AAS (p=0,040) e grupo (p=0,002). Diferenças importantes entre as distribuições dos dados basais entre os dois grupos (grupo controlo vs EAM): idade (47,95±11,55 vs 68,53±2,70 anos) p<0.001; sexo feminino (18,18 vs 22,80%) p=0,076; diabetes mellitus (9,09% vs 36,84%) p=0,012; AAS (18,18 vs 66,66%) p<0,001; clopidogrel (4,54% vs 66,66%) p=0,033; estatinas (31,81% vs 66,14%) p=0,078; beta-bloqueadores (18,18% vs 56,14%) p=0,011; anti-inflamatórios (4,54% vs 33,33%) p=0,009. Resultados da comparação entre os dois grupos quanto ao padrão lipídico (média±dp ou mediana/intervalo interquartil, grupo controlo vs EAM): CT (208,45±35,03 vs 171,05±41,63 mg/dl) p<0,001; HDLc (51,50/18,25 vs 42,00/16,00 mg/dl) p=0,007; HDL2 (8,50/3,25 vs 10,00/6,00 mg/dl) p=0,292; HDL3 (41,75±9,82 vs 31,75±9,41 mg/dl) p<0,001; LDLox (70,00/22,0 vs 43,50/21,00 U/L) p<0,001; TG (120,00/112,50 vs 107,00/86,00 mg/dl) p=0,527; Lp(a) (0,51/0,73 vs 0,51/0,50 g/L) p=0,854; ApoA1 (1,38±0,63 vs 1,19±0,21 g/L) p=0,002; ApoB (0,96±0,19 vs 0,78±0,28 g/L) p=0,004; ApoE (38,50/10,00 vs 38,00/17,00 mg/L) p=0,574. Nas correlações lineares entre as variáveis inflamatórias e as variáveis lipídicas para todos os doentes, encontrámos uma relação negativa entre IL-6 e CT, HDLc, HDL3, LDLox, ApoA1 e ApoB. A regressão múltipla marcadores inflamatórios/perfil lipídico (grupo controlo) foi: hs-CRP (R=0,883, R2=0,780) p=0,022; IL-6 (R=0,911, R2=0,830) p=0,007; MMP3 (R=0,498, R2=0,248) p=0,943; TNF-α (R=0,680, R2=0,462) p=0,524. A regressão múltipla marcadores inflamatórios/perfil lipídico (grupo EAM) foi: hs-CRP (R=0,647, R2=0,418) p=0,004; IL-6 (R=0,544, R2=0,300), p=0,073; MMP3 (R=0,539, R2=0,290) p=0,089; TNF-α (R=0,595; R2=0,354) p=0,022. Da comparação entre os marcadores inflamatórios dos dois grupos resultou (mediana/intervalo interquartil, grupo controlo vs EAM): hs-CRP (0,19/0,27 vs 0,42/2,53 mg/dl) p=0,001, IL-6 (4,90/5,48 vs 13,07/26,41 pg/ml) p<0,001, MMP3 (19,70/13,70 vs 10,10/10,40 ng/ml) p<0,001;TNF-α (8,67/6,71 vs 8,26/7,80 pg/dl) p=0,805. Conclusões: (1) Nos doentes com EAM, existe correlação entre as moléculas inflamatórias IL-6, MMP3 e TNF-α, quer com o marcador inflamatório hs-CRP, quer com o marcador de lesão miocárdica cTnI. Esta correlação reforça-se para os valores de cTnI 6-9 horas após admissão, especialmente na correlação múltipla com o grupo dos quatro marcadores inflamatórios. (2) IL-6 está inversamente ligada às lipoproteínas de colesterol; hs-CRP e IL-6 têm excelentes correlações com o perfil lipídico valorizado no seu conjunto. No grupo EAM encontram-se níveis séricos mais reduzidos para as lipoproteínas de colesterol. Para TNF-α não foram encontradas diferenças significativas entre os grupos, as quais foram observadas para a IL-6 e hs-CRP (mais elevadas no grupo EAM). Os valores de MMP3 no grupo controlo estão mais elevados. ABSTRACT: 0,524, p=0,001; 0,149, p=0,270; 0,275, p<0,001; TNF-α/cTnI 6-9h 0,428, p=0,001, 0,452, p<0,001, 0,183, p<0,001. A regressão linear múltipla cTnI admissão/marcadores inflamatórios produziu: (R=0,638, R2=0,407) p<0,001 e cTnI 6-9h/marcadores inflamatórios (R=0,780, R2=0,609) p<0,001. (2) Significância da análise multivariada para idade (p=0,029), IMC>30 (p=0.070), AAS (p=0,040) e grupo (p=0,002). Diferenças importantes entre as distribuições dos dados basais entre os dois grupos (grupo controlo vs EAM): idade (47,95±11,55 vs 68,53±2,70 anos) p<0.001; sexo feminino (18,18 vs 22,80%) p=0,076; diabetes mellitus (9,09% vs 36,84%) p=0,012; AAS (18,18 vs 66,66%) p<0,001; clopidogrel (4,54% vs 66,66%) p=0,033; estatinas (31,81% vs 66,14%) p=0,078; beta-bloqueadores (18,18% vs 56,14%) p=0,011; anti-inflamatórios (4,54% vs 33,33%) p=0,009. Resultados da comparação entre os dois grupos quanto ao padrão lipídico (média±dp ou mediana/intervalo interquartil, grupo controlo vs EAM): CT (208,45±35,03 vs 171,05±41,63 mg/dl) p<0,001; HDLc (51,50/18,25 vs 42,00/16,00 mg/dl) p=0,007; HDL2 (8,50/3,25 vs 10,00/6,00 mg/dl) p=0,292; HDL3 (41,75±9,82 vs 31,75±9,41 mg/dl) p<0,001; LDLox (70,00/22,0 vs 43,50/21,00 U/L) p<0,001; TG (120,00/112,50 vs 107,00/86,00 mg/dl) p=0,527; Lp(a) (0,51/0,73 vs 0,51/0,50 g/L) p=0,854; ApoA1 (1,38±0,63 vs 1,19±0,21 g/L) p=0,002; ApoB (0,96±0,19 vs 0,78±0,28 g/L) p=0,004; ApoE (38,50/10,00 vs 38,00/17,00 mg/L) p=0,574. Nas correlações lineares entre as variáveis inflamatórias e as variáveis lipídicas para todos os doentes, encontrámos uma relação negativa entre IL-6 e CT, HDLc, HDL3, LDLox, ApoA1 e ApoB. A regressão múltipla marcadores inflamatórios/perfil lipídico (grupo controlo) foi: hs-CRP (R=0,883, R2=0,780) p=0,022; IL-6 (R=0,911, R2=0,830) p=0,007; MMP3 (R=0,498, R2=0,248) p=0,943; TNF-α (R=0,680, R2=0,462) p=0,524. A regressão múltipla marcadores inflamatórios/perfil lipídico (grupo EAM) foi: hs-CRP (R=0,647, R2=0,418) p=0,004; IL-6 (R=0,544, R2=0,300), p=0,073; MMP3 (R=0,539, R2=0,290) p=0,089; TNF-α (R=0,595; R2=0,354) p=0,022. Da comparação entre os marcadores inflamatórios dos dois grupos resultou (mediana/intervalo interquartil, grupo controlo vs EAM): hs-CRP (0,19/0,27 vs 0,42/2,53 mg/dl) p=0,001, IL-6 (4,90/5,48 vs 13,07/26,41 pg/ml) p<0,001, MMP3 (19,70/13,70 vs 10,10/10,40 ng/ml) p<0,001;TNF-α (8,67/6,71 vs 8,26/7,80 pg/dl) p=0,805. Conclusões: (1) Nos doentes com EAM, existe correlação entre as moléculas inflamatórias IL-6, MMP3 e TNF-α, quer com o marcador inflamatório hs-CRP, quer com o marcador de lesão miocárdica cTnI. Esta correlação reforça-se para os valores de cTnI 6-9 horas após admissão, especialmente na correlação múltipla com o grupo dos quatro marcadores inflamatórios. (2) IL-6 está inversamente ligada às lipoproteínas de colesterol; hs-CRP e IL-6 têm excelentes correlações com o perfil lipídico valorizado no seu conjunto. No grupo EAM encontram-se níveis séricos mais reduzidos para as lipoproteínas de colesterol. Para TNF-α não foram encontradas diferenças significativas entre os grupos, as quais foram observadas para a IL-6 e hs-CRP (mais elevadas no grupo EAM). Os valores de MMP3 no grupo controlo estão mais elevados. ------------- ABSTRACT: Introduction: We reviewed the epidemiology, pathophysiology and current clinical knowledge about coronary heart disease, from its genesis to the acute myocardial infarction (AMI). The inflammatory theory for atherosclerosis, which has undergone considerable development in the last decade, was especially detailed. Markers of coronary atherosclerotic vulnerable plaque: The clinical and laboratory biomarkers associated with the unstable coronary atherosclerotic plaque vulnerable plaque are detailed. An emphasis was placed on the inflammatory mechanisms. Objectives: They are divided into two fundamental points: (1) To study in AMI patients, the relationship between the inflammatory molecules: Interleukin-6 (IL-6), Tumor Necrosis Factor-α (TNF-α) and Matrix metalloproteinase-3 (MMP3), unused in the clinical setting, with an inflammatory marker in clinical use: ultrasensitive C-reactive protein (hs-CRP), as well as a biomarker of myocardial injury: cardiac troponin I (cTnI). (2) To study, in the context of AMI, the Acute Phase Response (APR). We intend to demonstrate the impact of that clinical relevant phenomenon in the lipid profile and inflammatory biomarkers of our patients. Methods: (1) Prospective observational study of patients consecutively admitted for AMI (AMI group) in a single coronary care unit, after exclusion of trauma or infection. A peripheral assay at admission for IL-6, TNF-α, MMP3, hs-CRP and cTnI was performed. The latter was also valued in assays obtained 6-9 hours after admission. Linear correlation (Pearson's correlation coefficient, Spearman Rho's correlation coefficient and R2 regression) was performed between the three markers studied and the values of hs-CRP and cTnI (on admission and 6-9 hours after admission). Multiple linear regression was also obtained between cTnI on admission and 6-9h after, with all the inflammatory markers studied. (2) Case-control study between the AMI group and a random population of patients from an outpatient cardiology setting (control group). Cardiovascular events of any kind and infection or trauma were excluded in this group. The same inflammatory molecules were assayed in control and AMI groups. The following lipoproteins were also assayed: total cholesterol (TC), HDL cholesterol (HDLc) and subfractions 2 and 3 (HDL2 and HDL 3), oxidized LDL cholesterol (oxLDL), Triglycerides (TG), Lipoprotein (a) [Lp(a)], Apolipoprotein A1 (apoA1), Apolipoprotein B (ApoB) and Apolipoprotein E (ApoE). Demographics, classical risk factors, cardiovascular therapy and the use of anti-inflammatory drugs were appreciated in each group. The authors conducted a multivariate analysis with respect to demographics, risk factors and baseline therapy. The distribution of the same baseline characteristics was compared between the two groups, as well as the lipoprotein serum values. A correlation was performed between each inflammatory molecule and each of the lipoproteins, for all the patients studied. Multiple linear regression was determined between each inflammatory marker and all the lipid molecules per group. Finally, the statistical comparison between the inflammatory markers in the two groups was performed. Results: (1) The correlation coefficients recorded, respectively, Pearson, Spearman's Rho and regression-R2, were: IL-6/hs-CRP 0.549, p <0.001; 0.429, p=0.001; 0.302, p <0.001; MMP 3/hsCRP 0.325, p=0.014; 0.171, p=0.202; 0.106, p=0.014; TNF-α/hs-CRP 0.261, p=0.050; 0.315, p=0.017; 0.068, p=0.050; IL-6/admission cTnI 0.486, p<0.001; 0.483, p<0.001; 0.236, p<0.001; MMP3/admission cTnI 0.218, p=0.103; 0.146, p=0.278; 0.048, p=0.103; TNF-α/admission cTnI 0.444, p=0.001; 0.380, p=0.004; 0.197, p=0.001; IL-6/6-9 h cTnI 0.676, p<0.001; 0.149, p<0.001; 0.456, p <0.01; MMP3/6-9h cTnI 0.428, p=0.001; 0.149, p<0.001; 0.183, p=0.001; TNF-α/6-9 h cTnI 0.676, p<0,001; 0.452, p<0.001; 0.183, p<0,001. The multiple linear regression admission cTnI/inflammatory markers produced: (R=0.638, R2=0.407) p<0.001 and 6-9 h cTnI/inflammatory markers (R=0.780, R2=0.609) p<0.001. (2) Significances of the multivariate analysis were found for age (p=0.029), IMC>30 (p=0.070), Aspirin (p=0.040) and group (p=0.002). Important differences between the baseline data of the two groups (control group vs AMI): age (47.95 ± 11.55 vs 68.53±12.70 years) p<0.001; gender (18.18 vs 22.80%) p=0.076; diabetes mellitus (9.09% vs 36. 84%) p=0.012; Aspirin (18.18 vs. 66.66%) p<0.001; Clopidogrel (4, 54% vs 66.66%) p=0.033; Statins, 31.81% vs 66.14%, p=0.078, beta-blockers 18.18% vs 56.14%, p=0.011; anti-inflammatory drugs (4.54% vs 33.33%) p=0.009. Significant differences in the lipid pattern of the two groups (mean±SD or median/interquartile range, control group vs AMI): TC (208.45±35.03 vs 171.05±41.63 mg/dl) p<0.001; HDLc (51.50/18.25 vs 42.00/16.00 mg/dl) p=0.007; HDL2 (8.50/3.25 vs 10.00/6.00 mg/dl) p=0.292; HDL3 (41.75±9.82 vs 31.75±9.82 mg/dl) p<0.01; oxLDL (70.00/22.0 vs 43.50/21.00 U/L) p <0.001; TG (120.00/112.50 vs 107.00/86.00 mg/dl) p=0.527; Lp(a) (0.51/0.73 vs 0,51/0.50 g/L) p=0.854; apoA1 (1.38±0.63 vs 1.19±0.21 g/L) p=0.002; ApoB (0.96± 0.39 vs 0.78±0.28 g/L) p=0.004; ApoE (38.50/10,00 vs 38.00 /17,00 mg/L) p=0.574. In the linear correlations between inflammatory variables and lipid variables for all patients, we found a negative relationship between IL-6 and TC, HDLc, HDL3, ApoA1 and ApoB. The multiple linear regression inflammatory markers/lipid profile (control group) was: hs-CRP (R= 0.883, R2=0.780) p=0.022; IL6 (R=0.911, R2=0.830) p=0.007; MMP3 (R=0.498, R2=0.248) p=0.943; TNF-α (R=0.680, R2=0.462) p=0.524. For the linear regression inflammatory markers/lipid profile (AMI group) we found: hs-CRP (R=0.647, R2=0.418) p=0.004; IL-6 (R=0.544, R2=0.300) p=0.073; MMP3 (R=0.539, R2 =0.290) p=0.089; TNF-α (R=0.595, R2=0.354) p=0.022. The comparison between inflammatory markers in both groups (median/interquartile range, control group vs AMI) resulted as: hs-CRP (0.19/0.27 vs 0.42/2.53 mg/dl) p=0.001; IL-6 (4.90/5.48 vs 13.07/26.41 pg/ml) p<0.001; MMP3 (19.70/13.70 vs 10.10/10.40 ng/ml) p<0.001; TNF-α (8.67/6.71 vs 8.26/7.80 pg/dl) p=0.805. Conclusions: (1) In AMI patients there is a correlation between the inflammatory molecules IL-6, TNF-α and MMP3 with both the inflammatory marker hs-CRP and the ischemic marker cTnI. This correlation is strengthened for the cTnI at 6-9h post admission, particularly in the multiple linear regression to the four inflammatory markers studied. (2) IL-6 correlates negatively with the cholesterol lipoproteins. Hs-CRP and IL-6 are strongly correlated to the whole lipoprotein profile. AMI patients display reduced serum lipid levels. For the marker TNF-α no significant differences were found between groups, which were observed for IL-6 and hs-CRP (higher in the AMI group). MMP3 values are higher in the control group.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION Chronic low-grade inflammation and immune activation may persist in HIV patients despite effective antiretroviral therapy (ART). These abnormalities are associated with increased oxidative stress (OS). Bilirubin (BR) may have a beneficial role in counteracting OS. Atazanavir (ATV) inhibits UGT1A1, thus increasing unconjugated BR levels, a distinctive feature of this drug. We compared changes in OS markers in HIV patients on ATV/r versus efavirenz (EFV)-based first-line therapies. MATERIALS AND METHODS Cohort of the Spanish Research Network (CoRIS) is a multicentre, open, prospective cohort of HIV-infected patients naïve to ART at entry and linked to a biobank. We identified hepatitis C virus/hepatitis B virus (HCV/HBV) negative patients who started first-line ART with either ATV/r or EFV, had a baseline biobank sample and a follow-up sample after at least nine months of ART while maintaining initial regimen and being virologically suppressed. Lipoprotein-associated Phospholipase A2 (Lp-PLA2), Myeloperoxidase (MPO) and Oxidized LDL (OxLDL) were measured in paired samples. Marker values at one year were interpolated from available data. Multiple imputations using chained equations were used to deal with missing values. Change in the OS markers was modelled using multiple linear regressions adjusting for baseline marker values and baseline confounders. Correlations between continuous variables were explored using Pearson's correlation tests. RESULTS 145 patients (97 EFV; 48 ATV/r) were studied. Mean (SD) baseline values for OS markers in EFV and ATV/r groups were: Lp-PLA2 [142.2 (72.8) and 150.1 (92.8) ng/mL], MPO [74.3 (48.2) and 93.9 (64.3) µg/L] and OxLDL [76.3 (52.3) and 82.2 (54.4) µg/L]. After adjustment for baseline variables patients on ATV/r had a significant decrease in Lp-PLA2 (estimated difference -16.3 [CI 95%: -31.4, -1.25; p=0.03]) and a significantly lower increase in OxLDL (estimated difference -21.8 [-38.0, -5.6; p<0.01] relative to those on EFV, whereas no differences in MPO were found. Adjusted changes in BR were significantly higher for the ATV/r group (estimated difference 1.33 [1.03, 1.52; p<0.01]). Changes in BR and changes in OS markers were significantly correlated. CONCLUSIONS In virologically suppressed patients on stable ART, OS was lower in ATV/r-based regimens compared to EFV. We hypothesize these changes could be in part attributable to increased BR plasma levels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pancreatic beta-cell function and mass are markedly adaptive to compensate for the changes in insulin requirement observed during several situations such as pregnancy, obesity, glucocorticoids excess, or administration. This requires a beta-cell compensation which is achieved through a gain of beta-cell mass and function. Elucidating the physiological mechanisms that promote functional beta-cell mass expansion and that protect cells against death, is a key therapeutic target for diabetes. In this respect, several recent studies have emphasized the instrumental role of microRNAs in the control of beta-cell function. MicroRNAs are negative regulators of gene expression, and are pivotal for the control of beta-cell proliferation, function, and survival. On the one hand, changes in specific microRNA levels have been associated with beta-cell compensation and are triggered by hormones or bioactive peptides that promote beta-cell survival and function. Conversely, modifications in the expression of other specific microRNAs contribute to beta-cell dysfunction and death elicited by diabetogenic factors including, cytokines, chronic hyperlipidemia, hyperglycemia, and oxidized LDL. This review underlines the importance of targeting the microRNA network for future innovative therapies aiming at preventing the beta-cell decline in diabetes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L'insuline, produite par les cellules β du pancréas, joue un rôle central dans le contrôle de la glycémie. Un manque d'insuline entraine le diabète de type 2, une maladie répandue au stade d'épidémie au niveau mondial. L'augmentation du nombre de personnes obèses est une des causes principales du développement de la maladie. Avec l'obésité les tissus tels que le foie, le muscle, et le tissu adipeux deviennent résistants à l'insuline. En général, cette résistance est équilibrée par une augmentation de la sécrétion d'insuline. De ce fait, un grand nombre d'individus obèses ne deviennent pas diabétiques. Lorsque les cellules β ne produisent plus suffisamment d'insuline, alors le diabète se développe. Dans l'obésité, les cellules graisseuses sont résistantes à l'insuline et relâchent des lipides et autres produits qui affectent le bon fonctionnement et la vie des cellules β. «c-Jun Ν terminal Kinase» (JNK) est une enzyme qui joue un rôle important dans la résistance de l'insuline des cellules graisseuses. Cette même en2yme contribue aussi au déclin de la cellule β dans les conditions diabétogènes, et représente ainsi une cible thérapeutique potentielle du diabète. L'objectif de cette thèse a été de comprendre le mécanisme conduisant à l'activité de JNK dans les adipocytes et cellules β, dans l'obésité et le diabète de type 2. Nous montrons que les variations de JNK sont la conséquence de taux anormaux de JIP-1/EB1, une protéine qui a été impliquée dans certaines formes génétiques de diabète de type 2. En outre nous décrivons le mécanisme responsable des anomalies de JIP1/IB1 dans les adipocytes et cellules β. La restauration des taux de JIP-1/EB1 dans les deux types cellulaires pourrait être un objectif des thérapeutiques antidiabétiques actuelles et futures. - Le nombre d'individus touchés par le diabète de type 2 atteint aujourd'hui des proportions épidémiques à l'échelle mondiale. L'augmentation de la prévalence de l'obésité est la cause principale du développement de la maladie, qui, en général, survient suite à une perte de la sensibilité à l'insuline des tissus périphériques. Dans un grand nombre des cas, l'insulino-résistance est compensée par une augmentation de la sécrétion de l'insuline par les cellules β pancréatiques. Le diabète apparaît lorsque l'insuline n'est plus produite en quantité suffisante pour contrecarrer la résistance à l'insuline des tissus. Le défaut de production de l'insuline résulte du dysfonctionnement et de la réduction massive des cellules β. Les acides gras libres non estérifiés, en particulier le palmitate, provenant d'une alimentation riche en lipides et libérés par les adipocytes insulino-résistants contribuent au déclin de la cellule β en activant la voie de signalisation «cJun N-terminal kinase» (JNK). L'activation de JNK contribue aussi à la résistance à l'insuline des adipocytes dans l'obésité, soulignant ainsi l'importance de cette voie de signalisation dans la pathophysiologie du diabète. L'objectif de cette thèse a été de comprendre les mécanismes qui régulent JNK dans les cellules β et les adipocytes. Nous montrons que l'activation de JNK dans ces deux types cellulaires est la conséquence de la variation des taux de «JNK interacting protein 1» appelé aussi «islet brain 1» (JEP-1/ΓΒΙ), une protéine qui attache les kinases de la signalisation de JNK et dont des variations génétiques ont été associées avec le diabète de type 2. Dans les cellules β cultivées avec du palmitate, ainsi que dans les adipocytes dans l'obésité, l'expression de JEP-l/BBl est modifiée. Les modulations de l'expression de JEP-1/ΓΒΙ sont réalisées par le facteur de transcription «inducible cAMP early repressor» (ICER). L'expression d'ICER dans les adipocytes est diminuée dans l'obésité, et corrèle avec l'augmentation des niveaux de JEP-1/IB1. A l'inverse, le niveau d'expression d'ICER est augmenté dans les cellules β cultivées avec du palmitate, et cette augmentation perturbe le bon fonctionnement des cellules en réduisant les niveaux de JEP-l/IBl. Comme le palmitate, les particules pro-athérogéniques LDL-cholesterol oxydés, sont élevées chez les personnes obèses et diabétiques et sont délétères aux cellules β. Ces particules modifiées activent JNK dans les cellules β en diminuant l'expression de JIP-1/IB1 via ICER. Tous ces résultats montrent que le dérèglement de l'expression de JIP-l/EBl par ICER joue un rôle central dans l'activation de JNK dans les adipocytes et cellules β en souffrance dans l'obésité et le diabète de type 2. La restauration appropriée des niveaux de JEPl/IBl et d'ICER pourrait être considérée comme un objectif pour mesurer l'efficacité des traitements antidiabétiques actuels et futurs. - Type 2 diabetes has reached epidemic proportions worldwide, and poses a major socio-economic burden on developed and developing societies. The disease is often accompanied by obesity, and arises when β-cells produce insufficient insulin to meet the increased hormone demand, caused by insulin resistance. In obesity, enlargement of adipocytes contribute to their dysfunction, which is characterized by the abnormal release of some bioactive products such as non-esterified free fatty acids (NEF As). Chronic plasma elevation of NEF As elicits β-cell dysfunction and death, thereby, representing a key feature for development of diabetes in obesity (diabesity). Palmitate is the most abundant circulating NEF As in obesity, which triggers adipocytes and β-cell dysfunction. The effects of palmitate rely on the induction of the cJun N-terminal kinase (JNK) pathway. Activation of JNK promotes both β-cells dysfunction and insulin resistance in adipocytes. This thesis was undertaken to investigate the mechanisms accounting for the induction of the JNK pathway caused by palmitate. JNK is regulated by the scaffold protein JNK interacting protein-1, also called islet brain 1 (JIP-1/IB1). The levels of JDM/IB1 are critical for glucose homeostasis, as genetic variations within the gene were associated with diabetes. We found that activation of JNK in both, β-cells exposed to palmitate, and in adipocytes of obese mice, results from variations in the expression of JIP-l/EBl. Modifications in the JIP-1/IB1 levels were the consequence of abnormal expression of the inducible cAMP early repressor (ICER) in the two cell types. In addition, our data show that this repressor plays a key role in abnormal production of adipocyte hormones and β-cell dysfunction evoked by the pro-atherogenic oxidized LDL. Taken together, this study proposes that fine-tuning of appropriate levels of JIP-l/EBl, and ICER could circumvent β-cell failure, adipocyte dysfunction, and thereby, development of diabesity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AbstractType 2 diabetes (T2D) is a metabolic disease which affects more than 200 millions people worldwide. The progression of this affection reaches nowadays epidemic proportions, owing to the constant augmentation in the frequency of overweight, obesity and sedentary. The pathogenesis of T2D is characterized by reduction in the action of insulin on its target tissues - an alteration referred as insulin resistance - and pancreatic β-cell dysfunction. This latter deterioration is defined by impairment in insulin biosynthesis and secretion, and a loss of β-cell mass by apoptosis. Environmental factors related to T2D, such as chronic elevation in glucose and free fatty acids levels, inflammatory cytokines and pro-atherogenic oxidized low- density lipoproteins (LDL), contribute to the loss of pancreatic β-cell function.In this study, we have demonstrated that the transcription factor Inducible Cyclic AMP Early Repressor (ICER) participates to the progression of both β-cell dysfunction and insulin resistance. The expression of this factor is driven by an alternative promoter and ICER protein represents therefore a truncated product of the Cyclic AMP Response Element Modulator (CREM) family which lacks transactivation domain. Consequently, the transcription factor ICER acts as a passive repressor which reduces expression of genes controlled by the cyclic AMP and Cyclic AMP Response Element Binding protein (CREB) pathway.In insulin-secreting cells, the accumulation of reactive oxygen species caused by environmental factors and notably oxidized LDL - a process known as oxidative stress - induces the transcription factor ICER. This transcriptional repressor hampers the secretory capacity of β-cells by silencing key genes of the exocytotic machinery. In addition, the factor ICER reduces the expression of the scaffold protein Islet Brain 1 (IB 1 ), thereby favouring the activation of the c-Jun N-terminal Kinase (JNK) pathway. This triggering alters in turn insulin biosynthesis and survival capacities of pancreatic β-cells.In the adipose tissue of mice and human subjects suffering from obesity, the transcription factor ICER contributes to the alteration in insulin action. The loss in ICER protein in these tissues induces a constant activation of the CREB pathway and the subsequent expression of the Activating Transcription Factor 3 (ATF3). In turn, this repressor reduces the transcript levels of the glucose transporter GLUT4 and the insulin-sensitizer peptide adiponectin, thereby contributing to the diminution in insulin action.In conclusion, these data shed light on the important role of the transcriptional repressor ICER in the pathogenesis of T2D, which contributes to both alteration in β-cell function and aggravation of insulin resistance. Consequently, a better understanding of the molecular mechanisms responsible for the alterations in ICER levels is required and could lead to develop new therapeutic strategies for the treatment of T2D.RésuméLe diabète de type 2 (DT2) est une maladie métabolique qui affecte plus de 200 millions de personnes dans le monde. La progression de cette affection atteint aujourd'hui des proportions épidémiques imputables à l'augmentation rapide dans les fréquences du surpoids, de l'obésité et de la sédentarité. La pathogenèse du DT2 se caractérise par une diminution de l'action de l'insuline sur ses tissus cibles - un processus nommé insulino-résistance - ainsi qu'une dysfonction des cellules β pancréatiques sécrétrices d'insuline. Cette dernière détérioration se définit par une réduction de la capacité de synthèse et de sécrétion de l'insuline et mène finalement à une perte de la masse de cellules β par apoptose. Des facteurs environnementaux fréquemment associés au DT2, tels l'élévation chronique des taux plasmatiques de glucose et d'acides gras libres, les cytokines pro-inflammatoires et les lipoprotéines de faible densité (LDL) oxydées, contribuent à la perte de fonction des cellules β pancréatiques.Dans cette étude, nous avons démontré que le facteur de transcription « Inducible Cyclic AMP Early Repressor » (ICER) participe à la progression de la dysfonction des cellules β pancréatiques et au développement de Pinsulino-résistance. Son expression étant gouvernée par un promoteur alternatif, la protéine d'ICER représente un produit tronqué de la famille des «Cyclic AMP Response Element Modulator » (CREM), sans domaine de transactivation. Par conséquent, le facteur ICER agit comme un répresseur passif qui réduit l'expression des gènes contrôlés par la voie de l'AMP cyclique et des « Cyclic AMP Response Element Binding protein » (CREB).Dans les cellules sécrétrices d'insuline, l'accumulation de radicaux d'oxygène libres, soutenue par les facteurs environnementaux et notamment les LDL oxydées - un processus appelé stress oxydatif- induit de manière ininterrompue le facteur de transcription ICER. Ainsi activé, ce répresseur transcriptionnel altère la capacité sécrétoire des cellules β en bloquant l'expression de gènes clés de la machinerie d'exocytose. En outre, le facteur ICER favorise l'activation de la cascade de signalisation « c-Jun N- terminal Kinase » (JNK) en réduisant l'expression de la protéine « Islet Brain 1 » (IB1), altérant ainsi les fonctions de biosynthèse de l'insuline et de survie des cellules β pancréatiques.Dans le tissu adipeux des souris et des sujets humains souffrant d'obésité, le facteur de transcription ICER contribue à l'altération de la réponse à l'insuline. La disparition de la protéine ICER dans ces tissus entraîne une activation persistante de la voie de signalisation des CREB et une induction du facteur de transcription « Activating Transcription Factor 3 » (ATF3). A son tour, le répresseur ATF3 inhibe l'expression du transporteur de glucose GLUT4 et du peptide adipocytaire insulino-sensibilisateur adiponectine, contribuant ainsi à la diminution de l'action de l'insuline en conditions d'obésité.En conclusion, à la lumière de ces résultats, le répresseur transcriptionnel ICER apparaît comme un facteur important dans la pathogenèse du DT2, en participant à la perte de fonction des cellules β pancréatiques et à l'aggravation de l'insulino-résistance. Par conséquent, l'étude des mécanismes moléculaires responsables de l'altération des niveaux du facteur ICER pourrait permettre le développement de nouvelles stratégies de traitement du DT2.Résumé didactiqueL'énergie nécessaire au bon fonctionnement de l'organisme est fournie par l'alimentation, notamment sous forme de sucres (glucides). Ceux-ci sont dégradés en glucose, lequel sera distribué aux différents organes par la circulation sanguine. Après un repas, le niveau de glucose sanguin, nommé glycémie, s'élève et favorise la sécrétion d'une hormone appelée insuline par les cellules β du pancréas. L'insuline permet, à son tour, aux organes, tels le foie, les muscles et le tissu adipeux de capter et d'utiliser le glucose ; la glycémie retrouve ainsi son niveau basai.Le diabète de type 2 (DT2) est une maladie métabolique qui affecte plus de 200 millions de personnes dans le monde. Le développement de cette affection est causée par deux processus pathologiques. D'une part, les quantités d'insuline secrétée par les cellules β pancréatiques, ainsi que la survie de ces cellules sont réduites, un phénomène connu sous le nom de dysfonction des cellules β. D'autre part, la sensibilité des tissus à l'insuline se trouve diminuée. Cette dernière altération, l'insulino-résistance, empêche le transport et l'utilisation du glucose par les tissus et mène à une accumulation de ce sucre dans le sang. Cette stagnation de glucose dans le compartiment sanguin est appelée hyperglycémie et favorise l'apparition des complications secondaires du diabète, telles que les maladies cardiovasculaires, l'insuffisance rénale, la cécité et la perte de sensibilité des extrémités.Dans cette étude, nous avons démontré que le facteur ICER qui contrôle spécifiquement l'expression de certains gènes, contribue non seulement à la dysfonction des cellules β, mais aussi au développement de l'insulino-résistance. En effet, dans les cellules β pancréatiques en conditions diabétiques, l'activation du facteur ICER altère la capacité de synthèse et de sécrétion d'insuline et réduit la survie ces cellules.Dans le tissu adipeux des souris et des sujets humains souffrant d'obésité, le facteur ICER contribue à la perte de sensibilité à l'insuline. La disparition d'ICER altère l'expression de la protéine qui capte le glucose, le transoprteur GLUT4, et l'hormone adipocytaire favorisant la sensibilité à l'insuline, nommée adiponectine. Ainsi, la perte d'ICER participe à la réduction de la captation de glucose par le tissue adipeux et au développement de l'insulino-résistance au cours de l'obésité.En conclusion, à la lumière de ces résultats, le facteur ICER apparaît comme un contributeur important à la progression du DT2, en soutenant la dysfonction des cellules β pancréatiques et l'aggravation de l'insulino-résistance. Par conséquent, l'étude des mécanismes responsables de la dérégulation du facteur ICER pourrait permettre le développement de nouvelles stratégies de traitement du DT2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epidemiological data suggest that plant-derived phenolics beneficial effects include an inhibition of LDL oxidation. After applying a screening method based on 2,4-dinitrophenyl hydrazine- protein carbonyl reaction to 21 different plant-derived phenolic acids, we selected the most antioxidant ones. Their effect was assessed in 5 different oxidation systems, as well as in other model proteins. Mass-spectrometry was then used, evidencing a heterogeneous effect on the accumulation of the structurally characterized protein carbonyl glutamic and aminoadipic semialdehydes as well as for malondialdehyde-lysine in LDL apoprotein. After TOF based lipidomics, we identified the most abundant differential lipids in Cu++-incubated LDL as 1-palmitoyllysophosphatidylcholine and 1-stearoyl-sn-glycero-3-phosphocholine. Most of selected phenolic compounds prevented the accumulation of those phospholipids and the cellular impairment induced by oxidized LDL. Finally, to validate these effects in vivo, we evaluated the effect of the intake of a phenolic-enriched extract in plasma protein and lipid modifications in a well-established model of atherosclerosis (diet-induced hypercholesterolemia in hamsters). This showed that a dietary supplement with a phenolic-enriched extract diminished plasma protein oxidative and lipid damage. Globally, these data show structural basis of antioxidant properties of plant-derived phenolic acids in protein oxidation that may be relevant for the health-promoting effects of its dietary intake. that a dietary supplement with a phenolic-enriched extract diminished plasma protein oxidative and lipid damage. Globally, these data show structural basis of antioxidant properties of plant-derived phenolic acids in protein oxidation that may be relevant for the health-promoting effects of its dietary intake.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied whether PPARβ/δ deficiency modifies the effects of high fructose intake (30% fructose in drinking water) on glucose tolerance and adipose tissue dysfunction, focusing on the CD36-dependent pathway that enhances adipose tissue inflammation and impairs insulin signaling. Fructose intake for 8weeks significantly increased body and liver weight, and hepatic triglyceride accumulation in PPARβ/δ-deficient mice but not in wild-type mice. Feeding PPARβ/δ-deficient mice with fructose exacerbated glucose intolerance and led to macrophage infiltration, inflammation, enhanced mRNA and protein levels of CD36, and activation of the JNK pathway in white adipose tissue compared to those of water-fed PPARβ/δ-deficient mice. Cultured adipocytes exposed to fructose also exhibited increased CD36 protein levels and this increase was prevented by the PPARβ/δ activator GW501516. Interestingly, the levels of the nuclear factor E2-related factor 2 (Nrf2), a transcription factor reported to up-regulate Cd36 expression and to impair insulin signaling, were increased in fructose-exposed adipocytes whereas co-incubation with GW501516 abolished this increase. In agreement with Nrf2 playing a role in the fructose-induced CD36 protein level increases, the Nrf2 inhibitor trigonelline prevented the increase and the reduction in insulin-stimulated AKT phosphorylation caused by fructose in adipocytes. Protein levels of the well-known Nrf2 target gene NAD(P)H: quinone oxidoreductase 1 (Nqo1) were increased in water-fed PPARβ/δ-null mice, suggesting that PPARβ/δ deficiency increases Nrf2 activity; and this increase was exacerbated in fructose-fed PPARβ/δ-deficient mice. These findings indicate that the combination of high fructose intake and PPARβ/δ deficiency increases CD36 protein levels via Nrf2, a process that promotes chronic inflammation and insulin resistance in adipose tissue.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Olive oil decreases the risk of CVD. This effect may be due to the fatty acid profile of the oil, but it may also be due to its antioxidant content which differs depending on the type of olive oil. In this study, the concentrations of oleic acid and antioxidants (phenolic compounds and vitamin E) in plasma and LDL were compared after consumption of three similar olive oils, but with differences in their phenolic content. Thirty healthy volunteers participated in a placebo-controlled, double-blind, crossover, randomized supplementation trial. Virgin, common, and refined olive oils were administered during three periods of 3 weeks separated by a 2-week washout period. Participants were requested to ingest a daily dose of 25 ml raw olive oil, distributed over the three meals of the day, during intervention periods. All three olive oils caused an increase in plasma and LDL oleic acid (P,0·05) content. Olive oils rich in phenolic compounds led to an increase in phenolic compounds in LDL (P,0·005). The concentration of phenolic compounds in LDL was directly correlated with the phenolic concentration in the olive oils. The increase in the phenolic content of LDL could account for the increase of the resistance of LDL to oxidation, and the decrease of the in vivo oxidized LDL, observed in the frame of this trial. Our results support the hypothesis that a daily intake of virgin olive oil promotes protective LDL changes ahead of its oxidation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of the present study was to identify disturbances of nitric oxide radical (·NO) metabolism and the formation of cholesterol oxidation products in human essential hypertension. The concentrations of·NO derivatives (nitrite, nitrate, S-nitrosothiols and nitrotyrosine), water and lipid-soluble antioxidants and cholesterol oxides were measured in plasma of 11 patients with mild essential hypertension (H: 57.8 ± 9.7 years; blood pressure, 148.3 ± 24.8/90.8 ± 10.2 mmHg) and in 11 healthy subjects (N: 48.4 ± 7.0 years; blood pressure, 119.4 ± 9.4/75.0 ± 8.0 mmHg).Nitrite, nitrate and S-nitrosothiols were measured by chemiluminescence and nitrotyrosine was determined by ELISA. Antioxidants were determined by reverse-phase HPLC and cholesterol oxides by gas chromatography. Hypertensive patients had reduced endothelium-dependent vasodilation in response to reactive hyperemia (H: 9.3 and N: 15.1% increase of diameter 90 s after hyperemia), and lower levels of ascorbate (H: 29.2 ± 26.0, N: 54.2 ± 24.9 µM), urate (H: 108.5 ± 18.9, N: 156.4 ± 26.3 µM), ß-carotene (H: 1.1 ± 0.8, N: 2.5 ± 1.2 nmol/mg cholesterol), and lycopene (H: 0.4 ± 0.2, N: 0.7 ± 0.2 nmol/mg cholesterol), in plasma, compared to normotensive subjects. The content of 7-ketocholesterol, 5alpha-cholestane-3ß,5,6ß-triol and 5,6alpha-epoxy-5alpha-cholestan-3alpha-ol in LDL, and the concentration of endothelin-1 (H: 0.9 ± 0.2, N: 0.7 ± 0.1 ng/ml) in plasma were increased in hypertensive patients. No differences were found for ·NO derivatives between groups. These data suggest that an increase in cholesterol oxidation is associated with endothelium dysfunction in essential hypertension and oxidative stress, although ·NO metabolite levels in plasma are not modified in the presence of elevated cholesterol oxides.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The introduction of highly active antiretroviral therapy (HAART) for patients infected with HIV has significantly prolonged the life expectancy and to some extent has restored a functional immune response. However, the premature introduction of HAART has led to a significant and alarming increase in cardiovascular complications, including myocardial infarction and the appearance of abnormal distribution of body fat seen as lipodystrophy. One key element in the development of ischemic coronary artery disease is the presence of circulating and tissue-fixed modified low density lipoprotein (mLDL) that contributes to the initiation and progression of arterial lesions and to the formation of foam cells. Even though not completely elucidated, the most likely mechanism involves mLDL in the inflammatory response and the induction of a specific immune response against mLDL. Circulating antibodies against mLDL can serve as an indirect marker of the presence of circulating and vessel-fixed mLDL. In the present study, we measured antibodies to mLDL and correlated them with immune status (i.e., number of CD4+ T cells) in 59 HIV patients and with the clinical manifestation of lipodystrophy in 10 patients. We observed a significant reduction in anti-mLDL antibody levels related both to lipodystrophy and to an immunocompromised state in HIV patients. We speculate that these antibodies may explain in part the rapid development of ischemic coronary artery disease in some patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pequi is the fruit of Caryocar brasiliense and its oil has a high concentration of monounsaturated and saturated fatty acids, which are anti- and pro-atherogenic agents, respectively, and of carotenoids, which give it antioxidant properties. Our objective was to study the effect of the intake of a cholesterol-rich diet supplemented with pequi oil, compared to the same diet containing soybean oil, on atherosclerosis development, and oxidative stress in atherosclerosis-susceptible LDL receptor-deficient mice (LDLr-/-, C57BL/6-background). Female mice were fed a cholesterol-rich diet containing 7% soybean oil (Soybean group, N = 12) or 7% pequi oil (Pequi group, N = 12) for 6 weeks. The Pequi group presented a more atherogenic lipid profile and more advanced atherosclerotic lesions in the aortic root compared to the Soybean group. However, the Pequi group presented a less advanced lesion in the aorta than the Soybean group and showed lower lipid peroxidation (Soybean group: 50.2 ± 7.1; Pequi group: 30.0 ± 4.8 µmol MDA/mg protein) and anti-oxidized LDL autoantibodies (Soybean group: 35.7 ± 9.4; Pequi group: 15.6 ± 3.7 arbitrary units). Peritoneal macrophages from the Pequi group stimulated with zymosan showed a reduction in the release of reactive oxygen species compared to the Soybean group. Our data suggest that a pequi oil-rich diet slows atherogenesis in the initial stages, possibly due to its antioxidant activity. However, the increase of serum cholesterol induces a more prominent LDL migration toward the intimae of arteries, increasing the advanced atherosclerotic plaque. In conclusion, pequi oil associated with an atherogenic diet worsens the lipid profile and accelerates the formation of advanced atherosclerotic lesions despite its antioxidant action.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We identified different lipemic and metabolic responses after the ingestion of a standardized meal by healthy adults and related them to atherosclerotic markers. Samples from 60 normolipidemic adults were collected before and after a liquid meal (40 g fat/m² body surface) at 0, 2, 4, 6, and 8 h for measurements of lipids, free fatty acids (FFA), insulin, cholesteryl ester transfer protein (CETP), autoantibodies to epitopes of oxidized LDL (oxLDL Ab), lipolytic activities, and apolipoprotein E polymorphism. Mean carotid intima-media thickness (cIMT) was determined by Doppler ultrasound. The volunteers were classified into early (N = 39) and late (N = 31) triacylglycerol (TAG) responders to the test meal. Late responders showed lower HDL cholesterol concentration at fasting and in the TAG peak, lower insulin and higher FFA concentrations compared to early responders. Multivariate regression analyses showed that mean cIMT was associated with gender (male) and age in early responders and by cholesterol levels at the 6th hour in late responders. oxLDL Ab were explained by lipoprotein lipase and negatively by hepatic lipase and oxLDL Ab (fasting period) by CETP (negative) and FFA (positive). This study is the first to identify a postalimentary insulin resistance state, combined with a reduced CETP response exclusively among late responders, and the identification of the regulators of postalimentary atherogenicity. Further research is required to determine the metabolic mechanisms described in the different postalimentary phenotypes observed in this study, as well as in different pathological states, as currently investigated in our laboratory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les maladies cardiovasculaires (MCV) sont la principale cause de décès dans les pays occidentaux et constituent la principale complication associée au diabète. La lipoprotéine lipase (LPL) est une enzyme clé du métabolisme des lipides et est responsable de l'hydrolyse des lipoprotéines riches en triglycérides (TG). Plusieurs études ont démontré que la LPL sécrétée par les macrophages dans la paroi artérielle est pro-athérogénique. La dysfonction endothéliale caractérise les stades précoces du processus athérosclérotique. Il a été observé qu’un récepteur nouvellement identifié des lipoprotéines de basse densité oxydées (LDLox), le récepteur de type lectine des LDLox (LOX-1), est fortement exprimé dans les lésions athérosclérotiques humaines et dans l’aorte de rats diabétiques, suggérant un rôle clé de LOX-1 dans la pathogénèse de l’athérosclérose diabétique. Au vu du rôle potentiel de la LPL macrophagique et du LOX-1 dans l’athérosclérose associée au diabète de type 2, nous avons évalué la régulation de ces deux molécules pro-athérogéniques par des facteurs métaboliques et inflammatoires augmentés dans le diabète, soit la leptine, l’acide linoléique (LA) et la protéine C-réactive (CRP). Nos résultats démontrent que : 1) Dans les cellules endothéliales aortiques humaines (HAECs), LA augmente l’expression protéique de LOX-1 de façon temps- et dose-dépendante; 2) La pré-incubation de HAECs avec des antioxydants et des inhibiteurs de la NADPH oxydase, de la protéine kinase C (PKC) et du facteur nucléaire-kappa B (NF-kB), inhibe l’effet stimulant de LA sur l’expression protéique de LOX-1; 3) Dans les HAECs traitées avec LA, on observe une augmentation d’expression des isoformes classiques de la PKC; 4) LA augmente de manière significative l’expression génique de LOX-1 ainsi que la liaison des protéines nucléaires extraites des HAECs à la séquence régulatrice NF-kB présente dans le promoteur du gène de LOX-1; 5) LA augmente, via LOX-1, la captation des LDLox par les cellules endothéliales. Pris dans leur ensemble, ces résultats démontrent que LA augmente l’expression endothéliale de LOX-1 in vitro et appuient le rôle clé de LA dans la dysfonction endothéliale associée au diabète. Au vu de nos études antérieures démontrant qu’une expression accrue de LPL macrophagique chez les patients diabétiques de type 2 et que l’augmentation de facteurs métaboliques dans cette maladie, soit l’homocystéine (Hcys), les acides gras et les produits terminaux de glycation (AGE), accroissent l’expression de la LPL macrophagique, nous avons par la suite déterminé l’effet, in vitro, de deux autres facteurs métaboliques et inflammatoires surexprimés dans le diabète, soit la leptine et la CRP, sur l’expression de la LPL macrophagique. Les concentrations plasmatiques de leptine sont élevées chez les patients diabétiques et sont associées à un accroissement des risques cardiovasculaires. Nous avons démontré que : 1) Dans les macrophages humains, la leptine augmente l’expression de la LPL, tant au niveau génique que protéique; 2) L’effet stimulant de la leptine sur la LPL est aboli par la pré-incubation avec un anticorps dirigé contre les récepteurs à la leptine (Ob-R), des inhibiteurs de la PKC et des antioxydants; 3) La leptine augmente l’expression membranaire des isoformes classiques de la PKC et la diminution de l’expression endogène de la PKC, abolit l’effet de la leptine sur l’expression de la LPL macrophagique; 4) Dans les macrophages murins, la leptine augmente le taux de synthèse de la LPL et augmente la liaison de protéines nucléaires à la séquence protéine activée-1 (AP-1) du promoteur du gène de la LPL. Ces observations supportent la possibilité que la leptine puisse représenter un facteur stimulant de la LPL macrophagique dans le diabète. Finalement, nous avons déterminé, in vitro, l’effet de la CRP sur l’expression de la LPL macrophagique. La CRP est une molécule inflammatoire et un puissant prédicteur d’événements cardiovasculaires. Des concentrations élevées de CRP sérique sont documentées chez les patients diabétiques de type 2. Nous avons démontré que : 1) Dans les macrophages humains, la CRP augmente l’expression de la LPL au niveau génique et protéique et la liaison de la CRP aux récepteurs CD32 est nécessaire pour médier ses effets; 2) La pré-incubation de macrophages humains avec des antioxydants, des inhibiteurs de la PKC et de la protéine kinase mitogénique activée (MAPK), prévient l’induction de la LPL par la CRP; 3) La CRP augmente l’activité de la LPL, la génération intracellulaire d’espèces radicalaires oxygénées (ROS), l’expression d’isoformes classiques de la PKC et la phosphorylation des kinases extracellulaires régulées 1/2 (ERK 1/2); 4) Les macrophages murins traités avec la CRP démontrent une augmentation de la liaison des protéines nucléaires à la séquence AP-1 du promoteur du gène de la LPL. Ces données suggèrent que la LPL puisse représenter un nouveau facteur médiant les effets délétères de la CRP dans la vasculopathie diabétique. Dans l’ensemble nos études démontrent le rôle clé de facteurs métaboliques et inflammatoires dans la régulation vasculaire de la LPL et du LOX-1 dans le diabète. Nos données suggèrent que la LPL et le LOX-1 puissent représenter des contributeurs clé de l’athérogénèse accélérée associée au diabète chez l’humain. Mots-clés : athérosclérose, maladies cardiovasculaires, diabète de type 2, macrophage, LPL, cellules endothéliales, LOX-1, stress oxydatif, leptine, LA, CRP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lipoproteins such as LDL (low-density lipoprotein) and oxidized LDL have potentially adverse effects on endothelial cells due to their ability to activate pro-inflammatory pathways regulated via the transcription factor NF-kappaB (nuclear factor kappaB). Triacylglycerol-rich lipoproteins (the chylomicrons, very-low-density lipoprotein and their respective remnant particles) have also been implicated in the induction of a pro-inflammatory phenotype and up-regulation of adhesion molecule expression. Although early studies supported the proposal that LPL (lipoprotein lipase)-mediated hydrolysis of TRLs (triglyceride-rich lipoproteins) at the endothelium could activate the NFkappaB pathway, more recent studies provide evidence of pro-and anti-inflammatory responses when cells are exposed to fatty acids of TRL particles. A large number of genes are up- and down-regulated when cells are exposed to TRL, with the net effect reflecting receptor- and nonreceptor-mediated pathways that are activated or inhibited depending on fatty acid type, the lipid and apolipoprotein composition of the TRL and the presence or absence of LPL. Early concepts of TRL particles as essentially pro-inflammatory stimuli to the endothelium provide an overly simplistic view of their impact on the vascular compartment.