968 resultados para Oxidation rate
Resumo:
Rate of hydrogen sulfide oxidation in the redox zone of the Black Sea and rate of hydrogen sulfide formation due to bacterial sulfate reduction in the upper layer of anaerobic waters were measured in February-April 1991. These measurements were made using sulfur radioisotope under conditions close to those in situ. It was established that hydrogen sulfide is oxidized in the layer of oxygen and hydrogen sulfide coexistence under the upper boundary of the hydrogen sulfide layer. Maximum rate of hydrogen sulfide oxidation was recorded within the limits of density values dT of 16.20-16.30, while varying in the layer from 2 to 4.5 µmol/day. The average rate of hydrogen sulfide oxidation was 1.5-3 times higher than that during the warm season. Sulfide formation was not observed at most of the stations in the examined lower portion of the pycnocline layer (140 to 400 m). Noticeable sulfate reduction was detected only at one station on the northwestern shelf. Intensified hydrodynamics in the upper layers of the water mass during the cold season can be a probable reason for such noticeable changes in sulfur dynamics in the water mass of the Black Sea. Data suggesting that hydrogen sulfide oxidation proceeds under the hydrogen sulfide boundary indicate absence of the so-called "suboxic zone" in this basin.
Resumo:
First videographic indication of an Antarctic cold seep ecosystem was recently obtained from the collapsed Larsen B ice shelf, western Weddell Sea (Domack et al., 2005). Within the framework of the R/V Polarstern expedition ANTXXIII-8, we revisited this area for geochemical, microbiological and further videographical examinations. During two dives with ROV Cherokee (MARUM, Bremen), several bivalve shell agglomerations of the seep-associated, chemosynthetic clam Calyptogena sp. were found in the trough of the Crane and Evans glacier. The absence of living clam specimens indicates that the flux of sulphide and hence the seepage activity is diminished at present. This impression was further substantiated by our geochemical observations. Concentrations of thermogenic methane were moderately elevated with 2 µM in surface sediments of a clam patch, increasing up to 9 µM at a sediment depth of about 1 m in the bottom sections of the sediment cores. This correlated with a moderate decrease in sulphate from about 28 mM at the surface down to 23.4 mM, an increase in sulphide to up to 1.43 mM and elevated rates of the anaerobic oxidation of methane (AOM) of up to 600 pmol cm**-3 d**-1 at about 1 m below the seafloor. Molecular analyses indicate that methanotrophic archaea related to ANME-3 are the most likely candidates mediating AOM in sediments of the Larsen B seep.