951 resultados para Owen, Robert, 1771-1858
Resumo:
Cost estimating is a key task within Quantity Surveyors’ (QS) offices. Provision of an accurate estimate is vital to ensure that the objectives of the client are met by staying within the client’s budget. Building Information Modelling (BIM) is an evolving technology that has gained attention in the construction industries all over the world. Benefits from the use of BIM include cost and time savings if the processes used by the procurement team are adapted to maximise the benefits of BIM. BIM can be used by QSs to automate aspects of quantity take-off and the preparation of estimates, decreasing turnaround time and assist in controlling errors and inaccuracies. The Malaysian government has decided to require the use of BIM for its projects beginning from 2016. However, slow uptake is reported in the use of BIM both within companies and to support collaboration within the Malaysian industry. It has been recommended that QSs to start evaluating the impact of BIM on their practices. This paper reviews the perspectives of QSs in Malaysia towards the use of BIM to achieve more dependable results in their cost estimating practice. The objectives of this paper include identifying strategies in improving practice and potential adoption drivers that lead QSs to BIM usage in their construction projects. From the expert interviews, it was found out that, despite still using traditional methods and not practising BIM, the interviewees still acquire limited knowledge related to BIM. There are some drivers that potentially motivate them to employ BIM in their practices. These include client demands, innovation in traditional methods, speed in estimating costs, reduced time and costs, improvement in practices and self-awareness, efficiency in projects, and competition from other companies. The findings of this paper identify the potential drivers in encouraging Malaysian Quantity Surveyors to exploit BIM in their construction projects.
Resumo:
This study developed a transport climatology to the PICO-NARE station, in the central North Atlantic Ocean, using a 40-year set of atmospheric back trajectories. The trajectory set was subjected to a cluster analysis in order to group trajectories into six flow patterns, or clusters. An air flow probability analysis was conducted in conjunction with the cluster analysis in order to determine the source regions for flow to the site. Seasonal differences in the flow patterns were found, which included enhanced westerly flow in the winter, decreased westerly flow in the summer, and spring and fall having moderate westerly flow. The North Atlantic Oscillation had a significant impact on the winter and fall seasons and less significant impacts during spring and summer. The results of the climatology can be used in conjunction with measurements of ozone, CO, NOx, and NOy, which are currently being measured at the site, to develop a long-term, seasonal climatology of transport of pollutants to the central North Atlantic.
Resumo:
Over the past several decades, it has become apparent that anthropogenic activities have resulted in the large-scale enhancement of the levels of many trace gases throughout the troposphere. More recently, attention has been given to the transport pathway taken by these emissions as they are dispersed throughout the atmosphere. The transport pathway determines the physical characteristics of emissions plumes and therefore plays an important role in the chemical transformations that can occur downwind of source regions. For example, the production of ozone (O3) is strongly dependent upon the transport its precursors undergo. O3 can initially be formed within air masses while still over polluted source regions. These polluted air masses can experience continued O3 production or O3 destruction downwind, depending on the air mass's chemical and transport characteristics. At present, however, there are a number of uncertainties in the relationships between transport and O3 production in the North Atlantic lower free troposphere. The first phase of the study presented here used measurements made at the Pico Mountain observatory and model simulations to determine transport pathways for US emissions to the observatory. The Pico Mountain observatory was established in the summer of 2001 in order to address the need to understand the relationships between transport and O3 production. Measurements from the observatory were analyzed in conjunction with model simulations from the Lagrangian particle dispersion model (LPDM), FLEX-PART, in order to determine the transport pathway for events observed at the Pico Mountain observatory during July 2003. A total of 16 events were observed, 4 of which were analyzed in detail. The transport time for these 16 events varied from 4.5 to 7 days, while the transport altitudes over the ocean ranged from 2-8 km, but were typically less than 3 km. In three of the case studies, eastward advection and transport in a weak warm conveyor belt (WCB) airflow was responsible for the export of North American emissions into the FT, while transport in the FT was governed by easterly winds driven by the Azores/Bermuda High (ABH) and transient northerly lows. In the fourth case study, North American emissions were lofted to 6-8 km in a WCB before being entrained in the same cyclone's dry airstream and transported down to the observatory. The results of this study show that the lower marine FT may provide an important transport environment where O3 production may continue, in contrast to transport in the marine boundary layer, where O3 destruction is believed to dominate. The second phase of the study presented here focused on improving the analysis methods that are available with LPDMs. While LPDMs are popular and useful for the analysis of atmospheric trace gas measurements, identifying the transport pathway of emissions from their source to a receptor (the Pico Mountain observatory in our case) using the standard gridded model output, particularly during complex meteorological scenarios can be difficult can be difficult or impossible. The transport study in phase 1 was limited to only 1 month out of more than 3 years of available data and included only 4 case studies out of the 16 events specifically due to this confounding factor. The second phase of this study addressed this difficulty by presenting a method to clearly and easily identify the pathway taken by only those emissions that arrive at a receptor at a particular time, by combining the standard gridded output from forward (i.e., concentrations) and backward (i.e., residence time) LPDM simulations, greatly simplifying similar analyses. The ability of the method to successfully determine the source-to-receptor pathway, restoring this Lagrangian information that is lost when the data are gridded, is proven by comparing the pathway determined from this method with the particle trajectories from both the forward and backward models. A sample analysis is also presented, demonstrating that this method is more accurate and easier to use than existing methods using standard LPDM products. Finally, we discuss potential future work that would be possible by combining the backward LPDM simulation with gridded data from other sources (e.g., chemical transport models) to obtain a Lagrangian sampling of the air that will eventually arrive at a receptor.
Resumo:
The rate at which hydrothermal precipitates accumulate, as measured by the accumulation rate of manganese, can be used to identify periods of anomalous hydrothermal activity in the past. From a preliminary study of Sites 597 and 598, four periods prior to 6 Ma of anomalously high hydrothermal activity have been identified: 8.5 to 10.5 Ma, 12 to 16 Ma, 17 to 18 Ma, and 23-to-27 Ma. The 18-Ma anomaly is the largest and is associated with the jump in spreading from the fossil Mendoza Ridge to the East Pacific Rise, whereas the 23-to-27-Ma anomaly is correlated with the birth of the Galapagos Spreading Center and resultant ridge reorganization. The 12-to-16-Ma and 8.5-to-10.5-Ma anomalies are correlated with periods of anomalously high volcanism around the rim of the Pacific Basin and may be related to other periods of ridge reorganization along the East Pacific Rise. There is no apparent correlation between periods of fast spreading at 19°S and periods of high hydrothermal activity. We thus suggest that periods when hydrothermal activity and crustal alteration at mid-ocean ridges are the most pronounced may be periods of large-scale ridge reorganization.
Resumo:
Decomposition of organic matter combined with density stratification generate a pronounced intermediate water oxygen minimum zone (OMZ) in the northwest Indian Ocean. This zone currently lies between water depths of 200 and 2000 m and extends approximately 5000 km southeast from the Arabian coast. Based upon benthic foraminiferal assemblage changes, it has been suggested that this OMZ was even more extensive during the late Miocene-early Pliocene (6.5-3.0 Ma), with a maximum volume and/or intensity at approximately 5.0 Ma. While this inference may contribute to an understanding of the history of northwest Indian Ocean upwelling, corroborating geochemical evidence for this interpretation has heretofore been lacking. Ocean Drilling Program (ODP) sites 752, 754, and 757 on Broken and Ninetyeast ridges are located within central Indian Ocean intermediate water depths (1086-1650 m) but outside the present lateral dimensions of the Indian Ocean OMZ. High-resolution chemical analyses of sediment from these sites indicate significant reductions in the flux of Mn and normalized Mn concentrations between 6.5 and 3.0 Ma that are most pronounced at approximately 5.0 Ma. Because late Miocene-Pliocene paleodepths for these sites were essentially the same as at present and because extremely low sedimentation rates (0.3-1.3 cm/ky) most likely precluded sedimentary metal oxide diagenesis, we suggest that the observed Mn depletions reflect diminished deposition of reducible Mn oxyhydroxide phases within O2 deficient intermediate waters and that this effect was most intense at approximately 5.0 Ma. This interpretation implies that waters with less than 2.0 mL/L O2 extended at least 1500 km beyond their present limits and is consistent with changes in benthic foraminifera assemblages. We further suggest this expanded Indian Ocean OMZ is related to regionally and/or globally increased biological productivity.
Resumo:
Broken Ridge, in the eastern Indian Ocean, is a shallow-water volcanic platform which formed during the Early to middle Cretaceous at which time it comprised the northern portion of the Kerguelen-Heard Plateau. Rifting during the middle Eocene and subsequent seafloor spreading has moved Broken Ridge about 20?N to its present location. The sedimentary section of Broken Ridge includes Turonian-lower Eocene limestone and chalk with volcanic ash, an interval of detrital sands and gravels associated with middle Eocene rifting and uplift, and a middle-late Oligocene unconformity overlain by a thin section of Neogene-Holocene pelagic calcareous ooze. This paper summarizes the available post-cruise biostratigraphic and magnetostratigraphic data for the Cretaceous-Paleogene section on Broken Ridge. The synthesis of this information permits a more precise interpretation of the timing of events in the history of Broken Ridge, in particular the timing and duration of the middle Eocene rifting event. Paleontologic data support rapid flexural uplift of Broken Ridge in response to mechanical rather than thermal forces. Other highlights of the section include a complete Cretaceous/Tertiary boundary and an opportunity for first-order correlation of Paleogene diatom stratigraphy with that of the calcareous groups.
Resumo:
Strontium and neodymium radiogenic isotope ratios in early to middle Eocene fossil fish debris (ichthyoliths) from Lomonosov Ridge (Integrated Ocean Drilling Program Expedition 302) help constrain water mass compositions in the Eocene Arctic Ocean between 55 and 45 Ma. The inferred paleodepositional setting was a shallow, offshore marine to marginal marine environment with limited connections to surrounding ocean basins. The new data demonstrate that sources of Nd and Sr in fish debris were distinct from each other, consistent with a salinity-stratified water column above Lomonosov Ridge in the Eocene. The 87Sr/86Sr values of ichthyoliths (0.7079 - 0.7087) are more radiogenic than Eocene seawater, requiring brackish to fresh water conditions in the environment where fish metabolized Sr. The 87Sr/86Sr variations probably record changes in the overall balance of river Sr flux to the Eocene Arctic Ocean between 55 and 45 Ma and are used here to reconstruct surface water salinity values. The eNd values of ichthyoliths vary between -5.7 and -7.8, compatible with periodic (or intermittent) supply of Nd to Eocene Arctic intermediate water (AIW) from adjacent seas. Although the Norwegian-Greenland Sea and North Atlantic Ocean were the most likely sources of Eocene AIW Nd, input from the Tethys Sea (via the Turgay Strait in early Eocene time) and the North Pacific Ocean (via a proto-Bering Strait) also contributed.
Resumo:
Current attempts to understand climatic variability during the early to middle Pliocene require paleoceanographic information from the Pacific and Indian Oceans that may serve to test and/or constrain future circulation models. Ocean Drilling Program (ODP) Sites 885/886 are located in the central subarctic North Pacific at water depths exceeding 5700 m. Recent studies of rock magnetic properties suggest that the fine-grained Fe oxide component in sediment at Sites 885/886 experienced reductive dissolution during the early-middle Gilbert. Because such an interval in the North Pacific Red Clay Province suggests a maximum in the sedimentary flux of organic carbon and/or a minimum in bottom water dissolved O2 concentrations (and hence, a peak change in North Pacific oceanographic conditions), a geochemical investigation was conducted to test the hypothesis. Quaternary sediment at Hole 886B was subjected to an oxyhydroxide removal procedure, and chemical analyses indicate that bulk sediment concentrations of Fe and the Fe/Sc ratio decrease significantly upon reductive dissolution. Downcore chemical analyses of untreated sediment at Hole 886B demonstrate that similar depletions also occur across the proposed interval of reduced sediment. Downcore chemical analyses also indicate that a pronounced increase in the Ba/Sc ratio occurs across the interval. These results are consistent with an interpretation that abyssal sediment of the North Pacific experienced a decrease in redox conditions during the early-middle Gilbert, and that this change in oxidation state was related to a peak in paleoproductivity. If the zenith of late Miocene to middle Pliocene enhanced productivity observed at other Indo-Pacific divergence regions similarly can be constrained to the early-middle Gilbert, there exists an oceanographic boundary condition in which to test future models concerning Pliocene warmth.
Resumo:
The sediments recovered during DSDP Leg 92 (Site 598) include a complete 16 m.y. record of hydrothermal sedimentation along the western flank of the East Pacific Rise at 19°S. Fifty samples from this sediment column were analyzed to test the hypothesis that the REE composition of the hydrothermal component is primarily acquired via scavenging from seawater. Site 598 provides an ideal sample suite for this purpose: the sediments are lithologically "simple," primarily consisting of a mixture of hydrothermal materials and biogenous carbonates; the composition of the hydrothermal component is essentially constant through space and time; and the sediments have undergone minimal diagenetic alteration. The following observations suggest the above-stated hypothesis is true. The Ce anomaly as well as key indices of light and heavy REE behavior all show that the REE pattern of hydrothermal sediments approaches that of seawater with increasing paleodistance from the rise crest. Moreover, shale-normalized REE patterns are similar to that of seawater, varying only in absolute REE content: the REE content increases with distance from the paleo-rise crest and exhibits a pronounced increase in sediments deposited below the paleolysocline. Based on significant correlative relationships between paleodistance from the rise crest and both the concentration and mass accumulation rates (MARs) of REEs and Fe, we conclude the REEs in the hydrothermal component are derived from the interaction of seawater and Fe in the hydrothermal plume.
Accumulation rates of sediments and main sedimentary components in ODP Leg 121 holes on Broken Ridge
Resumo:
Broken Ridge, in the eastern Indian Ocean,is overlain by about 1600 m of middle Cretaceous to Pleistocene tuffaceous and carbonate sediments that record the oceanographic history of southern hemisphere mid-to high-latitude regions. Prior to about 42 Ma, Broken Ridge formed the northern part of the broad Kerguelen-Broken Ridge Plateau. During the middle Eocene, this feature was split by the newly forming Southeast Indian Ocean Ridge; since then, Broken Ridge has drifted north from about 55° to 31°S. The lower part of the sedimentary section is characterized by Turonian to Santonian tuffs that contain abundant glauconite and some carbonate. The tuffs record a large but apparently local volcanic input that characterized the central part of Broken Ridge into the early Tertiary. Maestrichtian shallow-water(several hundred to 1000 m depth) limestones and cherts accumulated at some of the highest rates ever documented from the open ocean, 4 to 5 g/cm**2/kyr. A complete (with all biostratigraphic zones) Cretaceous-Tertiary boundary section was recovered from site 752. The first 1.5 m.y. of the Tertiary is characterized by an order-of-magnitude reduction in the flux of biogenic sediments, indicating a period of sharply reduced biological productivity at 55°S, following which the carbonate and silica sedimentation rates almost reach the previous high values of the latest Cretaceous. We recovered a complete section through the Paleocene that contains all major fossil groups and is more than 300 m thick, perhaps the best pelagic Paleocene section encountered in ocean drilling. About 42 Ma, Broken Ridge was uplifted 2500 m in response to the intra-plateau rifting event; subsequent erosion and deposition has resulted in a prominent Eocene angular unconformity atop the ridge. An Oligocene disconformity characterized by a widespread pebble layer probably represents the 30 Ma sea-level fall. The Neogene pelagic ooze on Broken Ridge has been winnowed, and thus its grain size provides a direct physical record of the energy of the southern hemisphere drift current in the Indian Ocean for the past 30 m.y.
Resumo:
The present study involves the analysis and interpretation of geochemical data from a suite of sediment samples recovered at ODP Hole 752A. The samples encompass the time period that includes the lithospheric extension and uplift of Broken Ridge, and they record deposition below and above the mid-Eocene angular unconformity that denotes this uplift. A Q-mode factor analysis of the geochemical data indicates that the sediments in this section are composed of a mixture of three geochemical end members that collectively account for 94.2% of the total variance in the data. An examination of interelement ratios for each of these end members suggests that they represent the following sedimentary components: (1) a biogenic component, (2) a volcanogenic component, and (3) a hydrothermal component. The flux of the biogenic component decreases almost thirtyfold across the Eocene unconformity. This drastic reduction in the deposition of biogenic materials corresponds to the almost complete disappearance of chert layers, diatoms, and siliceous microfossils and is coincident with the uplift of Broken Ridge. The volcanogenic component is similar in composition to Santonian ash recovered at Hole 755A on Broken Ridge and is the apparent source of the Fe-stained sediment that immediately overlies the angular unconformity. This finding suggests that significant amounts of Santonian ash were subaerially exposed, weathered, and redeposited and is consistent with data that suggest that the vertical uplift of Broken Ridge was both rapid and extensive. The greatest flux of hydrothermal materials is recorded in the sediments immediately below the angular unconformity. This implies that the uplift of Broken Ridge was preceded by a significant amount of rifting, during which faulting and fracturing of the lithosphere led to enhanced hydrothermal circulation. This time sequence of events is consistent with (but not necessarily diagnostic of) the passive model of lithospheric extension and uplift.
Resumo:
Site 598 sediments were analyzed to determine the factors controlling the rare earth element (REE) geochemistry of the hydrothermal component. Site 598 provides an ideal sample suite for this purpose. Samples are lithologically "simple," primarily consisting of a hydrothermal component and biogenous carbonates. Also, the composition of the hydrothermal component appears unchanged through time or space, and the site appears to have undergone minimal diagenetic alteration. The shale-normalized REE patterns are similar to the pattern of seawater, varying only in absolute REE content. The REE content increases with distance from the paleorise crest and exhibits a pronounced increase in sediments deposited below the paleolysocline. Results presented are consistent with the following model: the source mechanism for the REE content of hydrothermal sediments is scavenging by Fe oxyhydroxides from seawater. With prolonged exposure to seawater resulting from transport far from the injection point and/or long residence at the seawatersediment interface, the absolute REE content of hydrothermal sediments increases and becomes more like seawater.
Resumo:
Studies of the late Miocene-early Pliocene biogenic bloom typically have focused on high-productivity areas in the Indian and Pacific Oceans in order to achieve high resolution samples. Thus there is a paucity of information concerning whether the Atlantic Ocean, in general or low-productivity regions in all three basins experienced this bloom. This study measured the phosphorus mass accumulation rate (PMAR). in five cores from low-productivity regions of the Atlantic and Indian Oceans. All cores exhibit a peak in productivity 4-5.5 Ma, coincident with the Indo-Pacific bloom. This suggests that nutrients were not shifted away from low-productivity regions nor out of the Atlantic Ocean. Instead, it appears that the bloom was caused by an overall increase in nutrient flux into the world oceans. Four of the cores record the bloom's PMAR peak as bimodal, indicating a pulsed increase in phosphorus to the oceans. This suggests that there may have been multiple causes of the biogenic bloom.