184 resultados para Ovum.
Resumo:
Development within the cleidoic egg of birds and reptiles presents the embryo with the problem of accumulation of wastes from nitrogen metabolism. Ammonia derived from protein catabolism is converted into the less toxic product urea or relatively insoluble uric acid. The pattern of nitrogen excretion of the green iguana, Iguana iguana, was determined during embryonic development using samples from allantoic fluid and from the whole homogenized egg, and in hatchlings and adults using samples of blood plasma. Urea was the major excretory product over the course of embryonic development. It was found in higher concentrations in the allantoic sac, suggesting that there is a mechanism present on the allantoic membrane enabling the concentration of urea. The newly hatched iguana still produced urea while adults produced uric acid. The time course of this shift in the type of nitrogen waste was not determined but the change is likely to be related to the water relations associated with the terrestrial habit of the adult. The green iguana produces parchment-shelled eggs that double in mass during incubation due to water absorption; the eggs also accumulate 0.02. mM of urea, representing 82% of the total measured nitrogenous residues that accumulate inside the allantois. The increase in egg mass and urea concentration became significant after 55. days of incubation then were unchanged until hatching. © 2012 Elsevier Inc.
Resumo:
The insulin-like growth factor (IGF) system is related to quality of oocytes and embryos. The aim of this study was to investigate the mRNA levels of IGF1 and IGF2 and their receptors, IGFR1 and IGFR2, as well as IGFBP2, IGFBP4, and PAPP-A in oocytes from Nelore compared to Holstein cows. Pools of oocytes (20 oocytes/pool) from Nelore (n=8 pools) and Holstein (n=4 pools) were obtained via ovum pick-up (OPU, 10 sessions) and cumulus cells and zona pellucida were removed. The pools were submitted to total RNA extraction. Expression of members of the IGF system was assessed by real time RT-PCR. The mRNA expression of IGF1 and IGF2, IGFR1 and IGFR2, IGFBP2 and IGFBP4 was significantly higher (P<0.01) in oocytes from Holstein whereas the expression of PAPP-A was significantly higher (P<0.05) in oocytes from Nelore cows. The high PAPP-A expression and the low expression of IGFBP2 and IGFBP4 are associated with more efficient degradation of IGFBPs, which results in greater bioavailability of IGF in Nelore oocytes when compared to the Holstein. © 2013 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Aspiração folicular videolaparoscópica em ovelhas recém-desmamadas submetidas à estimulação ovariana
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this study was to assess the reproductive response of adult and prepubertal goats subjected to repeated laparoscopic ovum pick-up (LOPU). The study animals were divided into two groups, specifically, adult nanny goats (GA, n=10) and prepubertal nanny goats (GP, n=10), which were subjected to estrous synchronization and ovarian stimulation for LOPU. Both groups underwent six LOPU procedures at seven-day intervals and were subsequently subjected to controlled mating and pregnancy diagnosis to evaluate their future fertility. The study showed a reduction in the number of follicles visualized and in the amount and quality of the oocytes that were recovered and exposed to in vitro maturation. As indicated by the fertility test, however, no complications were found during the laparoscopic procedures that would impair the reproductive future of the animals. Therefore, a viable number of oocytes were obtained even with the decreased reproductive efficiency, proving that repeated LOPUs do not interfere with the reproductive of adult and prepubertal nanny goats. These results indicate a positive aspect of this procedure, allowing for increasing reproductive performance of this kind, when used for the production in vitro.
Resumo:
Buffaloes and bovines are polyestrous and seasonal or annual livestock, respectively, that show reduced fertility during heat stress. To investigate whether reduced fertility is related to oocyte competence in both species, immature oocytes from buffalo and bovine heifers were collected during winter and summer and subjected to molecular analyses. In each season, heifers of both species had their follicular wave emergence synchronized with a standard protocol (Ferreira et al., 2011). Before being subjected to ovum pick up (OPU), cutaneous (CT; degrees C) and rectal (RT; degrees C) temperatures and respiratory rate (RR; breaths/min) were measured. Oocytes' RNA was extracted to evaluate the expression of target genes related to mtDNA replication/transcription (PPARGC1A, TFAM and MT-CO1), apoptosis (BAX and BCL2) and HS (HSP90AA1 and HSPA1AB). ACTB, HIST1H2AG and GAPDH were initially chosen as housekeeping genes. In buffaloes, CT (35.0 +/- 0.4 vs 23.8 +/- 0.5), RT (38.7 +/- 0.1 vs 38.0 +/- 0) and RR (21.3 +/- 1.2 vs 15.4 +/- 1.1) were higher during summer than winter. However, in bovine heifers, RT (38.7 +/- 0.1 vs 38.6 +/- 0.1) and RR (44.8 +/- 1.5 vs 40.6 +/- 1.5) were similar in both seasons, while CT (31.6 +/- 0.3 vs 30.2 +/- 0.3) was increased during summer. Reduced expression of ACTB, HIST1H2AG and GAPDH was evidenced during summer, disqualifying them as housekeeping genes. Similarly, the expression of all target genes was reduced during summer in oocytes of both species. In summary, physiological responses to heat stress seem to be more intense in buffalo than bovine heifers. However, in both species, negative effects of heat stress upon oocyte quality occur at the molecular level and affects genes related to several biological functions.
Resumo:
Contents The IGF system is related to embryo quality. We aim to determine the effect of the heat stress on the mRNA expression of IGF1 and IGF2, IGFR1 and IGFR2, IGFBP2 and IGFBP4, and PAPPA in in vitro production (IVP) blastocysts from Nelore and Holstein after ovum pick up (OPU) to better understand the differences between these breeds.Oocytes from four Nelore and seven Holstein were collected in six OPU sessions. Following in vitro maturation and fertilization using six Nelore or Holstein sires, embryos were divided into control (cultured at 39 degrees C) and heat stress (HS; exposed to 41 degrees C for 9h). Blastocysts were submitted to RNA extraction. The IGF1 expression was higher in blastocysts under HS in both breeds, and the expression of IGFBP2 and IGFBP4 was higher in Holstein blastocysts under HS. The high PAPPA expression and the low expression of IGFBP2 and IGFBP4 are associated with a more efficient degradation of IGFBPs, which results in greater IGF bioavailability in Nelore blastocysts and may contribute to the superior HS tolerance in Nelore, when compared to Holstein.
Resumo:
Currently, timed ovulation induction and timed artificial insemination (TAI) can be performed in buffalo using GnRH or estradiol plus progesterone/progestin (P4)-releasing devices and prostaglandin F-2 alpha (PGF(2 alpha)). The control of the emergence of follicular waves and of ovulation at predetermined times, without the need for estrus detection, has facilitated the management and improved the efficiency of AI programs in buffalo during the breeding and nonbreeding season. Multiple ovulations, embryo transfer, ovum collection and in vitro embryo production have been shown to be feasible in buffalo, although low efficiency and limited commercial application of these techniques have been documented as well. These results could be associated with low ovarian follicular pools, high levels of follicular atresia and failures of the oocyte to enter the oviduct after superstimulation of follicular growth. This review discusses a number of key points related to the manipulation of ovarian follicular growth to improve pregnancy rates following TAI and embryo transfer of in vivo- and in vitro-derived embryos in buffalo.
Resumo:
The present study aims to report ovum pickup (OPU), in vitro embryo production (IVEP) and embryo transfer (ET) outcomes of fresh and vitrified buffalo embryos. For this purpose, 36 buffalo donors were submitted to 11 OPU sessions (n = 201). A total of 998 oocytes (5.0 +/- 0.5/donor/session) and 584 viable oocytes (2.9 +/- 0.3/donor/session) were recovered. Viable oocytes (grades 1, 2 and 3) were subjected to IVM, IVF (D0) and IVC. On D2, 54.5% of cleavage rate was obtained. Embryo yield on D7 was 44.9% (grade 1: 229 embryos, grade 2: 5 embryos and grade 3: 28 embryos). From this total, 115 fresh (grades 1 to 3) and 70 vitrified embryos (only grade 1) were transferred into recipients previously synchronized with fixed time embryo transfer (FTET) protocol. Vitrification was performed using the cryotop method. Pregnancy diagnosis in fresh and in vitrified groups were, respectively: 43.5% (50/115) and 37.1% (26/70) on 30 days after embryo transfer, and 41.7% (48/115) and 31.4% (22/70) on 60 days after embryo transfer. In conclusion, our results demonstrate the possibilities for commercial use of the techniques of OPU, IVEP and ET of fresh and vitrified embryos in buffaloes.
Resumo:
The aim of the present study was to evaluate the effects of season of the year (summer and winter) and parity (heifers and cows) on oocyte quality and number in buffaloes. For this purpose, 71 buffaloes had follicular wave emergence synchronized before OPU. OPU of all follicles >= 2mm was done 5 days after the beginning of the hormonal protocol, in 4 replicates (two for each season). Data were analyzed by ANOVA using PROC GLIMMIX, in a 2 x 2 factorial arrangement of treatments. No interactions were observed in following variables: number of follicles, number of total and viable oocytes, recovery rate, percentage of viable oocytes, grade I oocytes, grade II oocytes, grade III oocytes, denuded oocytes, expanded cumulus oocytes, and atretic/degenerated oocytes. Number of follicles visualized at OPU and recovery rate were not affected by parity or season. Relative to parity, number of total and viable oocytes were greater in heifers than in cows, respectively. Concerning season of the year, number of viable oocytes and viable oocyte rate were increased in winter. In conclusion, better oocyte quality can be obtained from heifers and during winter in buffaloes. However, the number of total oocytes seems to be more influenced by parity than by season of the year in this species.