700 resultados para Ovulatory follicles
Resumo:
The objective was to study dynamic changes of ovaries in rhesus macaques stimulated by gonadotropins to identify an indicator for predicting ovarian response to stimulation. Twenty-one cycling monkeys were given 36 IU/d recombinant human follicle-stimulat
Resumo:
Objective: To evaluate the histomorphometry and expression of Ki-67 and c-kit in ovarian follicles of pinealectomized or melatonin-treated pinealectomized rats.Study design: Forty adult rats were randomly divided into four groups of 10 animals: Group I - control; Group II - sham-pinealectomized; Group III - pinealectomized (Px), and Group IV - Px treated with melatonin (10 mu g/night, per animal). After two months' treatment, on the night of proestrous, the animals were placed in metabolic cages for night urine collection and subsequent measurement of 6-sulfatoxymelatonin (6-SMT). the rats were anesthetized, blood samples were taken for estrogen and progesterone determinations, and they were then euthanized. the ovaries were dissected out for further histological and immunohistochemical analyses. Data were first submitted to analysis of variance (ANOVA) complemented with the Tukey-Kramer test for multiple comparisons (P < 0.05).Results: the urinary levels of 6-SMT and serum progesterone were lower in the Px group (GIII). Exogenous melatonin treatment restored both blood melatonin and 6-SMT urinary levels. the histomorphometric data in Group III revealed a significant increase of degenerating antral and nonantral follicles with regard to the other groups. in addition no corpora lutea were observed in this group. No significant differences were noticed regarding the number of corpora lutea among the other groups (I, II and IV), but the number of cells and the thickness of the theca interna of Px animals (Group III) were higher than in the other groups. Conversely, the density of progesterone receptors (fmol/g) in the ovaries of Group III was significantly lower than in the other groups.Conclusion: Our data indicate that melatonin exerts a role on the maintenance of a proper follicular function, and is thus important for ovulation and progesterone production. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Folliculogenesis is a complex process regulated by various paracrine and autocrine factors. In vitro growth systems of primordial and preantral follicles have been developed for future use of immature oocytes, as sources of fertilizable oocytes and for studying follicular growth and oocyte maturation mechanisms. Rodents were often chosen for in vitro follicular culture research and a lot of factors implicated in folliculogenesis have been identified using this model. To date, the mouse is the only species in which the whole process of follicular growth, oocyte maturation, fertilization and embryo transfer into recipient females was successfully performed. However, the efficiency of in vitro culture systems must still be considerably improved. Within the follicle, numerous events affect cell proliferation and the acquisition of oocyte developmental competency in vitro, including interactions between the follicular cells and the oocyte, and the composition of the culture medium. Effects of the acting factors depend on the stage of follicle development, the culture system used and the species. This paper reviews the action of endocrine, paracrine factors and other components of culture medium on in vitro growth of preantral follicles in rodents.
Resumo:
info:eu-repo/semantics/published
Resumo:
Nonspecific changes (nonspecific chronic inflammation) in patients with chronic diarrhea represent the commonest diagnosis in colorectal biopsy interpretation, but these changes are of little clinical significance.
Resumo:
BACKGROUND: Intra-specific variation in melanocyte pigmentation, common in the animal kingdom, has caught the eye of naturalists and biologists for centuries. In vertebrates, dark, eumelanin pigmentation is often genetically determined and associated with various behavioral and physiological traits, suggesting that the genes involved in melanism have far reaching pleiotropic effects. The mechanisms linking these traits remain poorly understood, and the potential involvement of developmental processes occurring in the brain early in life has not been investigated. We examined the ontogeny of rapid eye movement (REM) sleep, a state involved in brain development, in a wild population of barn owls (Tyto alba) exhibiting inter-individual variation in melanism and covarying traits. In addition to sleep, we measured melanistic feather spots and the expression of a gene in the feather follicles implicated in melanism (PCSK2). RESULTS: As in mammals, REM sleep declined with age across a period of brain development in owlets. In addition, inter-individual variation in REM sleep around this developmental trajectory was predicted by variation in PCSK2 expression in the feather follicles, with individuals expressing higher levels exhibiting a more precocial pattern characterized by less REM sleep. Finally, PCSK2 expression was positively correlated with feather spotting. CONCLUSIONS: We demonstrate that the pace of brain development, as reflected in age-related changes in REM sleep, covaries with the peripheral activation of the melanocortin system. Given its role in brain development, variation in nestling REM sleep may lead to variation in adult brain organization, and thereby contribute to the behavioral and physiological differences observed between adults expressing different degrees of melanism.
Resumo:
Le récepteur nucléaire Nr5a2 est exprimé dans l’ovaire, plus spécifiquement dans les cellules de granulosa et lutéales. Une déplétion conditionnelle de Nr5a2 dans les cellules de granulosa au stade de follicule primaire par croisement de souris Nr5a2-flox et Amhr2-Cre (Nr5a2f/fAmhr2Cre/+) génère des problèmes au niveau de l’expansion du cumulus, de l’ovulation et de la lutéinisation. Ainsi, nous estimons que Nr5a2 régule les connexions intercellulaires dans le follicule ovarien via la connexine 43 (Cx43), une protéine de jonction impliquée dans l’expansion du cumulus. Le premier objectif de l’étude était de déterminer si l’absence d’expansion du cumulus chez les souris Amhr2Cre-cKO est liée à l’absence de communication intercellulaire adéquate entre les cellules de granulosa et de cumulus dans les follicules préovulatoires. À cette fin, des ovaires de souris immatures Amhr2Cre-cKO et non transgéniques ont été prélevés (n=3) après un traitement de superstimulation utilisant les gonadotropines eCG suivie de hCG afin d’induire l’ovulation. Nous avons ainsi démontré, par RT-PCR, une sous-expression de Cx43 avant et au moment du stimulus ovulatoire (0 h et 2 h) chez le groupe Amhr2Cre-cKO (P<0.01), ce qui pourrait mener à un problème dans l’acquisition de la compétence développementale de l’oocyte. D’un autre côté, au moment de l’ovulation (12 h), l’ARNm de Cx43 est surexprimé dans le groupe Amhr2Cre-cKO, ce qui pourrait prévenir les cellules du cumulus de se détacher l’une de l’autre. Nous avons ainsi conclu que Cx43 est un gène sous le contrôle de Nr5a2 et qu’une régulation erronée de ce gène est une cause possible du problème d’expansion du cumulus chez les souris Amhr2Cre-cKO. Afin d’examiner le rôle de Nr5a2 dans l’ovulation et la lutéinisation à différents stades de la maturation folliculaire, nous suggérons que Nr5a2 module la séquence temporelle des événements menant à l’ovulation. En croisant des souris Nr5a2-flox et Cyp19-Cre (Nr5a2f/fCyp19Cre/+), l’expression de Nr5a2 a été interrompue dans les cellules de granulosa des follicules antraux et préovulatoires. Aucune portée n’a été obtenue de ces souris (n=4) durant un essai d’accouplement de 6 mois. Chez les souris Cyp19Cre-cKO on remarque la présence de structures s’apparentant à des cellules de type lutéales et les femelles âgées d’un an présentent des kystes folliculaires hémorragiques et une hypertrophie de l’épithélium en surface de l’ovaire. Les deux modèles transgéniques démontrent donc une absence de l’expansion du cumulus et de l’ovulation. En conclusion, Nr5a2 semble réguler différemment la folliculogenèse et l’ovulation dans les cellules de granulosa des follicules primaires et antraux.
Resumo:
BACKGROUND: The intracellular signalling mechanisms that regulate ovarian follicle development are unclear; however, we have recently shown differences in the Akt and Erk signalling pathways in dominant compared to subordinate follicles. The aim of this study was to investigate the effects of inhibiting Akt and Erk phosphorylation on IGF- and gonadotropin- stimulated granulosa and theca cell function in vitro, and on follicle development in vivo. METHODS: Bovine granulosa and theca cells were cultured for six days and stimulated with FSH and/or IGF, or LH in combination with PD98059 (Erk inhibitor) and/or LY294002 (Akt inhibitor) and their effect on cell number and hormone secretion (estradiol, activin-A, inhibin-A, follistatin, progesterone and androstenedione) determined. In addition, ovarian follicles were treated in vivo with PD98059 and/or LY294002 in ewes on Day 3 of the cycle and follicles were recovered 48 hours later. RESULTS: We have shown that gonadotropin- and IGF-stimulated hormone production by granulosa and theca cells is reduced by treatment with PD98059 and LY294002 in vitro. Furthermore, treatment with PD98059 and LY294002 reduced follicle growth and oestradiol production in vivo. CONCLUSION: These results demonstrate an important functional role for the Akt and Erk signalling pathways in follicle function, growth and development.
Resumo:
Prenatal testosterone excess leads to neuroendocrine, ovarian, and metabolic disruptions, culminating in reproductive phenotypes mimicking that of women with polycystic ovary syndrome (PCOS). The objective of this study was to determine the consequences of prenatal testosterone treatment on periovulatory hormonal dynamics and ovulatory outcomes. To generate prenatal testosterone-treated females, pregnant sheep were injected intramuscularly (days 30-90 of gestation, term = 147 days) with 100 mg of testosterone-propionate in cottonseed oil semi-weekly. Female offspring born to untreated control females and prenatal testosterone-treated females were then studied during their first two breeding seasons. Sheep were given two injections of prostaglandin F-2alpha 11 days apart, and blood samples were collected at 2-h intervals for 120 h, 10-min intervals for 8 h during the luteal phase (first breeding season only), and daily for an additional 15 days to characterize changes in reproductive hormonal dynamics. During the first breeding season, prenatal testosterone-treated females manifested disruptions in the timing and magnitude of primary gonadotropin surges, luteal defects, and reduced responsiveness to progesterone negative feedback. Disruptions in the periovulatory sequence of events during the second breeding season included: 1) delayed but increased preovulatory estradiol rise, 2) delayed and severely reduced primary gonadotropin surge in prenatal testosterone-treated females having an LH surge, 3) tendency for an amplified secondary FSH surge and a shift in the relative balance of FSH regulatory proteins, and 4) luteal responses that ranged from normal to anovulatory. These outcomes are likely to be of relevance to developmental origin of infertility disorders and suggest that differences in fetal exposure or fetal susceptibility to testosterone may account for the variability in reproductive phenotypes.
Resumo:
Ovarian follicle development is regulated through endocrine and local mechanisms. Increasing evidence indicates roles for transforming growth factor beta superfamily members, including inhibins and activins. We recently identified divergent expression of mRNAs encoding activin receptors (ActR) and inhibin co-receptor betaglycan in chicken follicles at different stages of maturation. Here, we compare the actions of LH and FSH (0, 1, 10, 100 ng/ml) on levels of mRNA for ActRI, ActRIIA, ActRIIB and betaglycan in chicken granulosa and theca cells (GC and TC) from preovulatory (F1) and prehierarchical (6-8 mm) follicles. The expression of mRNAs for LH-R and FSH-R and production of inhibin A, oestradiol and progesterone were also quantified. FSH decreased ActRIIB and ActRI mRNA levels in 6-8 mm GC, whereas LH increased the mRNA levels. Both LH and FSH enhanced ActRIIA (5- and 8.5-fold) and betaglycan mRNA expression (2- and 3.5-fold) in 6-8 mm GC. In 6-8 mm TC, LH and FSH both increased the betaglycan mRNA level (7- and 3.5-fold respectively) but did not affect ActRI, ActRIIA and ActRIIB transcript levels. In F1 GC, both LH and FSH stimulated ActRI (2- and 2.4-fold), ActRIIB (3.2- and 2.7-fold) and betaglycan (7- and 4-fold) mRNA levels, while ActRIIA mRNA was unaffected. In F1 TC, LH and FSH reduced ActRIIA (35-50%) and increased (4.5- and 7.6-fold) betaglycan mRNA, but had no effect on ActRI and ActRIIB transcript levels. Results support the hypothesis that expression of ActR and betaglycan are differentially regulated by gonadotrophins during follicle maturation in the hen. This may represent an important mechanism for fine-tuning follicle responsiveness to local and systemic activins and inhibins.
Resumo:
In recent years, exciting progress has been made towards unravelling the complex intraovarian control mechanisms that, in concert with systemic signals, coordinate the recruitment, selection and growth of follicles from the primordial stage through to ovulation and corpus luteum formation. A plethora of growth factors, many belonging to the transforming growth factor-beta (TGF-beta) superfamily, are expressed by ovarian somatic cells and oocytes in a developmental, stage-related manner and function as intraovarian regulators of folliculogenesis. Two such factors, bone morphogenetic proteins, RMP-4 and BMP-7, are expressed by ovarian stromal cells and/or theca cells and have recently been implicated as positive regulators of the primordial-to-primary follicle transition. In contrast, evidence indicates a negative role for anti-Mullerian hormone (AMH, also known as Mullerian-inhibiting substance) of pre-granulosa/granulosa cell origin in this key event and subsequent progression to the antral stage. Two other TGF-beta superfamily members, growth and differentiation factor-9 (GDF-9) and BMP-15 (also known as GDF-9B) are expressed in an oocyte-specific manner from a very early stage and play key roles in promoting follicle growth beyond the primary stage; mice with null mutations in the gdf-9 gene or ewes with inactivating mutations in gdf-9 or bmp-15 genes are infertile with follicle development arrested at the primary stage. Studies on later stages of follicle development indicate positive roles for granulosa cell-derived activin, BMP-2, -5 and -6, theca cell-derived BMP-2, -4 and -7 and oocyte-derived BMP-6 in promoting granulosa cell proliferation, follicle survival and prevention of premature luteinization and/or atresia. Concomitantly, activin, TGF-beta and several BMPs may exert paracrine actions on theca cells to attenuate LH-dependent androgen production in small to medium-size antral follicles. Dominant follicle selection in monovular species may depend on differential FSH sensitivity amongst a growing cohort of small antral follicles. Changes in intrafollicular activins, GDF-9, AMH and several BMPs may contribute to this selection process by modulating both FSH- and IGF-dependent signalling pathways in granulosa cells. Activin may also play a positive role in oocyte maturation and acquisition of developmental competence. in addition to its endocrine role to suppress FSH secretion, increased output of inhibin by the selected dominant follicle(s) may upregulate LH-induced androgen secretion that is required to sustain a high level of oestradiol secretion during the pre-ovulatory phase. Advances in our understanding of intraovarian regulatory mechanisms should facilitate the development of new approaches for monitoring and manipulating ovarian function and improving fertility in domesticated livestock, endangered species and man.
Resumo:
Ovarian follicle development is primarily regulated by an interplay between the pituitary gonadotrophins, LH and FSH, and ovary-derived steroids. Increasing evidence implicates regulatory roles of transforming growth factor-beta (TGF beta) superfamily members, including inhibins and activins. The aim of this study was to identify the expression of mRNAs encoding key receptors of the inhibin/activin system in ovarian follicles ranging from 4 mm in diameter to the dominant F1 follicle (similar to 40 turn). Ovaries were collected (n=16) from inid-sequence hens maintained on a long-day photoschedule (16h of light:8 h of darkness). All follicles removed were dissected into individual granulosa and thecal layers. RNA was extracted and cDNA synthesized. Real-time quantitative PCR was used to quantify the expression of niRNA encoding betaglycan, activin receptor (ActR) subtypes (type-I, -IIA and -IIB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH); receptor expression data were normalized to GAPDH expression. Detectable levels of ActRI, -IIA and -IIB and the inhibin co-receptor (betaglycan) expression were found in all granulosa and thecal layers analysed. Granulosa ActRI mRNA peaked (P < 0(.)05) in 8-9(.)9 mm follicles, whereas ActRIIA rose significantly from 6-7(.)9 mm to 8-9(.)9 nun, before filling to F3/2; levels then rose sharply (3-fold) to F1 levels. Granulosa betaglycan niRNA expression rose 3-fold from 4-5(.)9 min to 8-9(.)9 mm, before falling 4-fold to F3/2; levels then rose sharply (4-fold) to F1 levels. ActRIIB levels did not vary significantly during follicular development. Thecal ActRI mRNA expression was similar from 4-7(.)9 mm then decreased significantly to a nadir at the F4 position, before increasing 2-fold to the F1 (P < 0(.)05). Although thecal ActRIIB and -IIA expression did not vary significantly from 4 nim to F3, ActRIIB expression increased significantly (2-fold) from F3 to F1 and ActIIA, increased 22-fold from F2 to F1 (P < 0(.)05). Thecal betaglycan fell to a nadir at F6 after follicle selection; levels then increased significantly to F2, before filling similar to 50% in the F I. In all follicles studied expression of betaglycan and ActRI (granulosa: 1-0(.)65, P < 0-001, n=144/group; theca: r=0(.)49, P < 0-001, n=144/group) was well correlated. No significant correlations were identified between betaglycan and ActRIIA or -IIB. Considering all follicles analysed, granulosa mRNA expression of betaglycan, ActRI ActRIIA and ActRIIB were all significantly lower than in corresponding thecal tissue (betaglycan, 11(.)4-fold; ActRIIB, 5(.)1-fold; ActR(.) 3-8-fold: ActRIIA, 2(.)8-fold). The co-localization of type-I and -II activin receptors and betaglycan on granulosa and thecal cells are consistent with a local auto/paracrine role of inhibins and activins in modulating ovarian follicle development, selection and progression in the domestic fowl.
Resumo:
Secretion of LH and FSH from the anterior pituitary is regulated primarily by hypothalamic GnRH and ovarian steroid hormones. More recent evidence indicates regulatory roles for certain members of the transforming growth factor beta (TGF beta) superfamily including inhibin and activin. The aim of this study was to identify expression of mRNAs encoding key receptors and ligands of the inhibin/activin system in the hen pituitary gland and to monitor their expression throughout the 24-25-h ovulatory cycle. Hens maintained on long days (16 h light/8 h dark) were killed 20, 12, 6 and 2 h before predicted ovulation of a midsequence egg (n = 8 per group). Anterior pituitary glands were removed, RNA extracted and cDNA synthesized. Plasma concentrations of LH, FSH, progesterone and inhibin A were measured. Real-time quantitative PCR was used to quantify pituitary expression of mRNAs encoding betaglycan, activin receptor (ActR) subtypes (type I, IIA), GnRH receptor (GnP,H-R), LH beta subunit, FSH beta subunit and GAPDH. Levels of mRNA for inhibin/activin beta A and beta B subunits, inhibin alpha subunit, follistatin and ActRIIB mRNA in pituitary were undetectable by quantitative PCR (< 2 amol/reaction). Significant changes in expression (P < 0.05) of ActRIIA and betaglycan mRNA were found, both peaking 6 h before ovulation just prior to the preovulatory LH surge and reaching a nadir 2 h before ovulation, just after the LH surge. There were no significant changes in expression of ActRI mRNA throughout the cycle although values were correlated with mRNA levels for both ActRIIA (r=0.77; P < 0.001) and betaglycan (r=0.45; P < 0.01). Expression of GnRH-R mRNA was lowest 20 h before ovulation and highest (P < 0.05) 6 h before ovulation; values were weakly correlated with betaglycan (r=0.33; P=0.06) and ActRIIA (r=0.34; P=0.06) mRNA levels. Expression of mRNAs encoding LH beta and FSH beta subunit were both lowest (P < 0.05) after the LH surge, 2 h before ovulation. These results are consistent with an endocrine, but not a local intrapituitary, role of inhibin-related proteins in modulating gonadotroph function during the ovulatory cycle of the hen, potentially through interaction with betaglycan and ActRIIA. In contrast to mammals, intrapituitary expression of inhibin/activin subunits and follistatin appears to be extremely low or absent in the domestic fowl.