284 resultados para Overlay
Resumo:
Greedy routing can be used in mobile ad-hoc networks as geographic routing protocol. This paper proposes to use greedy routing also in overlay networks by positioning overlay nodes into a multi-dimensional Euclidean space. Greedy routing can only be applied when a routing decision makes progress towards the final destination. Our proposed overlay network is built such that there will be always progress at each forwarding node. This is achieved by constructing at each node a so-called nearest neighbor convex set (NNCS). NNCSs can be used for various applications such as multicast routing, service discovery and Quality-of-Service routing. NNCS has been compared with Pastry, another topology-aware overlay network. NNCS has superior relative path stretches indicating the optimality of a path.
Resumo:
The Sensor Node Overlay Multicast (SNOMC) protocol supports reliable, time-efficient and energy-efficient dissemination of data from one sender node to multiple receivers as it is needed for configuration, code update, and management operations in wireless sensor networks. SNOMC supports end-to-end reliability using negative acknowledgements. The mechanism is simple and easy to implement and can significantly reduce the number of transmissions. SNOMC supports three different caching strategies namely caching on each intermediate node, caching on branching nodes, or caching on the sender node only. SNOMC was evaluated in our in-house real-world testbed and compared to a number of common data dissemination protocols. It outperforms the selected protocols in terms of transmission time, number of transmitted packets, and energy-consumption.
Resumo:
Cognitive radio represents a promising paradigm to further increase transmission rates in wireless networks, as well as to facilitate the deployment of self-organized networks such as femtocells. Within this framework, secondary users (SU) may exploit the channel under the premise to maintain the quality of service (QoS) on primary users (PU) above a certain level. To achieve this goal, we present a noncooperative game where SU maximize their transmission rates, and may act as well as relays of the PU in order to hold their perceived QoS above the given threshold. In the paper, we analyze the properties of the game within the theory of variational inequalities, and provide an algorithm that converges to one Nash Equilibrium of the game. Finally, we present some simulations and compare the algorithm with another method that does not consider SU acting as relays.
Resumo:
Cover title.
Resumo:
Thesis (M.S.)--University of Illinois.
Resumo:
Originally presented as the author's thesis (M.S.), University of Illinois at Urbana-Champaign.
Resumo:
"December 1976."
Resumo:
"Report no. IL-PRR-140"--Technical report documentation page.
Resumo:
"July 1996."
Resumo:
Mode of access: Internet.
Resumo:
We present the idea of a programmable structured P2P architecture. Our proposed system allows the key-based routing infrastructure, which is common to all structured P2P overlays, to be shared by multiple applications. Furthermore, our architecture allows the dynamic and on-demand deployment of new applications and services on top of the shared routing layer.