986 resultados para Orthogonal polarization modes
Resumo:
The dipole mode in triangular photonic crystal single defect cavity is degenerate. By deforming the lattice in photonic crystal we can obtain non-degenerate dipole modes. Lattice deforming in the whole photonic crystal destroys the characteristic of symmetry, so the distribution of the electromagnetic field is affected and the polarization of the electromagnetic field is also changed. Lattice deforming divides the degenerate dipole mode into the x-dipole mode and the y-dipole mode. It is found that the non-degenerate modes have better properties of polarization. So the high polarization and single dipole mode photonic crystal laser can be achieved by deforming the lattice of photonic crystal. In this paper, we simulated the cavity in photonic crystal slab and mainly calculated the quality factor of x-dipole mode under different deforming conditions and with different filling factors. The properties of polarization of x-dipole and y-dipole modes are also calculated. It is found that the ratio of intensities of E-x to E-y in x-dipole mode and that of E-y to E-x in y-dipole mode are 44 and 27, respectively.
Resumo:
An efficient polarization splitter based on a microracetrack resonator in silicon-on-insulator has been designed and realized using electron beam lithography and inductively coupled plasma etching. Polarization-dependent waveguides and the microracetrack resonator are combined and exploited to split two orthogonal polarizations. Rib waveguides are employed to enhance the coupling efficiency for the transverse-electric mode and endow the resonator with high performance for both polarizations. In experiments, a splitting ratio has been achieved of about 20 dB at the drop port around 1550 nm for each extracted polarization, in good agreement with the prediction.
Resumo:
Modes in square resonators are analyzed and classified according to the irreducible representations of the point group C-4v. If the mode numbers p and q that denote the number of wave nodes in the directions of two orthogonal square sides are unequal and have the same even-odd characteristics, the corresponding double modes are accidentally degenerate and can be combined into two new distributions with definite parities relative to the square diagonal mirror planes. The distributions with odd parities belong to the whispering-gallery-like modes in square resonators. The mode frequencies and quality factors are also calculated by the finite-difference time-domain technique and Pade approximation method. The numerically calculated mode frequencies agree with the theoretical ones very well and the whispering-gallery-like modes have quality factors much higher than other modes, including their accidentally degenerate counterparts in square resonators.
Resumo:
The polyetherketone (PEK-c) guest-host polymer planar waveguides doped with (4'-nitro)-3-azo-9-ethyl-carbazole (NAEC) were prepared. The waveguide films were poled by corona-onset poling at elevated temperature (COPET), and the corona poling setup includes a grid voltage making the surface-charge distribution uniform. By using the prism-in coupling method, the dark-line spectrum given by the reflected intensity versus the angle of incidence have been obtained, and the optical transmission losses of mth modes have been measured for the poled polymer waveguides at lambda = 632.8 nm. The measurement result showed that the optical loss of the fundamental mode is less than 0.7 dB cm(-1) for the TE polarization. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
In this work, the guided modes of a photonic crystal polarization beam splitter (PC-PBS) are studied. We demonstrate that the transmission of a low-loss photonic crystal 120 degrees waveguide bend integrated with the PBS will be influenced if the PBS is multi-moded. We propose a single-moded PC-PBS structure by introducing deformed structures, and it shows twice the enhancement of the transmission. This device with remarkable improvement of performance is promising in the use of photonic crystal integrated circuits design.
Resumo:
Optical films containing the genetic variant bacteriorhodopsin BR-D96N were experimentally studied in view of their properties as media for holographic storage. Different polarization recording schemes were tested and compared. The influence of the polarization states of the recording and readout waves on the retrieved diffractive image's intensity and its signal-to-noise ratio were analyzed. The experimental results showed that, compared with the other tested polarization relations during holographic recording, the discrimination between the polarization states of diffracted and scattered light is optimized with orthogonal circular polarization of the recording beams, and thus a high signal-to-noise ratio and a high diffraction efficiency are obtained. Using a He-Ne laser (633 nm, 3 mW) for recording and readout, a spatial light modulator as a data input element, and a 2D-CCD sensor for data capture in a Fourier-transform holographic setup, a storage density of 2 x 10(8) bits/cm(2) was obtained on a 60 x 42 mu m(2) area in the BR-D96N film. The readout of encoded binary data was possible with a zero-error rate at the tested storage density. (c) 2005 Optical Society of America.
Resumo:
Photochromic diarylethene, 1,2-bis[2-methyl-5-(3-fluorophenyl)-3-thienyl] perfluorocyleopentene (1a), was synthesized. The compound showed good photochromic reactions both in solution and in PMMA matrix by photo-irradiation. Using the diarylethene lb/PMMA film as recording medium and a He-Ne laser for recording and readout, four types of polarization holographic optical recording were accomplished for the first time. The results show that the orthogonal circular polarization recording is the best method for holographic optical recording when the target photochromic diarylethene is used as recording material. (c) 2006 Published by Elsevier B.V.
Resumo:
The interface modes and LO phonon modes in GaAs/AlAs quantum wells is investigated within the isotropic dispersionless dielectric continuum with nodes in displacement u at the interfaces as boundary condition. The interface modes are found to be purely interface polarization charge effect while LO eigenmodes induce only bulk polarization charges. Analytical expression is determined for LO eigenmodes and is found in good agreement with realistic model calculation, and its labeling index is interpreted as the helicity of electric field as it travels from one side to the other side of the slab.
Resumo:
We propose a fiber-to-waveguide coupler for side-illuminated p-i-n photodiodes to obtain high responsivity and low polarization dependence that is grown on InP substrate and is suitable for surface hybrid integration in low cost modules. The fiber-to-waveguide coupler is based on a diluted waveguide,which is composed of ten periods of undoped 120nm InP/80nm InGaAsP (1.05μm bandgap) multiple layers. Using the semi-vectorial three dimensional beam propagation method (BPM) with the central difference scheme,the coupling efficiency of fiber-to-waveguide under different conditions is simulated and studied,and the optimized conditions for fiber-to-waveguide coupling are obtained. For TE-like and TM-like modes,the calculated maximum coupling efficiency is higher than 94% and 92% ,respectively. The calculated polarization dependence is less than 0. ldB,showing good polarization independence.
Resumo:
Polarization-insensitive semiconductor optical amplifiers (SOA's) with tensile-strained multi-quantum-wells as actice regions are designed and fabricated. The 6x6 Luttinger-Kohn model and Bir-Pikus Hamiltonian are employed to calculate the valence subband structures of strained quantum wells, and then a Lorentzian line-shape function is combined to calculate the material gain spectra for TE and TM modes. The device structure for polarization insensitive SOA is designed based on the materialde gain spectra of TE and TM modes and the gain factors for multilayer slab waveguide. Based on the designed structure parameters, we grow the SOA wafer by MOCVD and get nearly magnitude of output power for TE and TM modes from the broad-area semiconductor lasers fabricated from the wafer.
Resumo:
We analyze theoretically the polarization characteristics of polarization maintaining fiber and study the basic measurement principles of beat length and polarization extinction ratio of this kind of optical fiber. According, to the dependence of the phase difference between two orthogonally polarized modes (denoted Os HE(11)(x) and HE(11)(y)) transmitted in the polarization maintaining fiber on the light wavelength, we propose the wavelength-sweeping modulation method to measure the beat length and the model birefringence. Based on this technique, the hew length and polarization extinction ratio of the PANDA polarization maintaining fibers (PMFs) (provided by Yangtze Optical Fiber and Cable Company, Wuhan, China) were investigated in detail. Experimental results show good consistent with the theoretical ones. We find that this method shows high measurement precision with the advantages of clear measurement principle and easy to operate. 2010 Wiley Periodicals, Inc. Microwave Opt Technol Lett 52: 1466-1469, 2010; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.25244
Resumo:
Anisotropic impedance surfaces are employed as low-profile and broadband reflectors that convert orthogonal linear to right- and left-handed circular polarization respectively. By virtue of anisotropy, it is possible to independently control the reflection characteristics of two orthogonal linearly polarized incident plane waves and therefore achieve linear to circular polarization conversion. Equivalent circuits for anisotropic impedance surfaces with arbitrarily shaped elements are employed to demonstrate the operating principle and a design procedure is proposed. The proposed design procedure is demonstrated by means of an example involving a dipole array. A prototype is designed and its performance characteristics are evaluated. The 3-dB relative axial ratio bandwidth exceeds 60%, while low loss and angular stability are also reported. Numerical and experimental results on a fabricated prototype are presented to validate the synthesis and the performance. © 2006 IEEE.
Resumo:
Dynamic magnetic properties of arrays of Ni nanorods with a low aspect ratio have been investigated. It has been shown that the spectra of spin-wave resonances localized on nanorods with a low aspect ratio typically feature the presence of zones with high density of states resulting in a characteristic two-peak pattern of Stokes and anti-Stokes lines of magneto-optical (MO) Brillouin light scattering with pronounced Stokes–anti-Stokes (S-AS) asymmetry. A simple theoretical model based on the analysis of the elliptic character of the polarization of the optical wave interacting with a dipole magnetostatic wave has been proposed. It has been shown that the S-AS asymmetry is due entirely to the asymmetry of the MO interaction efficiency with respect to time reversal of the magnetic precession in a magnon.
Resumo:
An electronically tunable reflection polarizer which exploits the dielectric anisotropy of nematic liquid crystals (LC) has been designed, fabricated and measured in a frequency band centered at 130 GHz. The phase agile polarizing mirror converts an incident slant 45° signal upon reflection to right hand circular (RHCP), orthogonal linear (-45 °) or left hand circular (LHCP) polarization depending on the value of the voltage biasing the LC mixture. In the experimental set-up this is achieved by applying a low frequency bias voltage of 0 V, 40 V and 89 V respectively, across the cavity containing the LC material.
Resumo:
Light of wavelength 632.8 nm and p-polarization is incident on a prism-air gap (varied from 0.7 to 7 mum)-Al-GaAs arrangement. Both the photosignal generated by the Schottky diode and the reflectance are measured as a function of the internal angle of incidence in the prism. There is significant, well-defined enhancement of the photosignal, up to a factor of approximately 7.5, associated with two different types of enhanced absorption modes. For air gaps <1.5 mum there is photosignal enhancement due to an enhanced absorption feature (reflectance dip) that occurs at an angle of incidence just above critical angle in the prism; this feature corresponds to the excitation of a surface plasmon polariton at the Al-air interface. For air gaps > 1 mum there are between one and ten photoresponse peaks at input angles less than the critical angle. The corresponding enhanced absorption features are due to leaky guided wave modes set up in the air gap.