166 resultados para Optische Gitter


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motivation dieser Arbeit ist die Idee, ein höchst sensitives und selektives Spektroskop, welches gleichzeitig robust ist, auf Basis von Halbleiterlasern zum Einsatz in der Atemgasdiagnostik zu entwickeln. Technische Grundlage ist die Idee, die Probe innerhalb des Laserresonators zu vermessen (sogenannte intra cavity absorption spectroscopy, ICAS). Im speziellen soll durch die Verwendung des relativen Intensitätsrauschens zur Messwertbestimmung und die Verwendung von nur zwei Moden statt der sonst für ICAS verwendeten multimodigen Laser, die Empfindlichkeit erhöht, sowie die Messwerterfassung vereinfacht werden. Die Probe im Laserresonator zu Messen, hat den Vorteil, dass durch die multiple Hin­ und Rückreflektion die wirksame Pfadlänge durch die Probe vervielfacht wird. Dabei werden Verluste an den Resonatorspiegeln durch die Verstärkung der aktiven Zone des Lasers kompensiert. Außerdem wird durch die Konkurrenz der Moden um die idealerweise homogen verbreiterte Verstärkung im Laser die Empfindlichkeit noch einmal bedeutend erhöht. Schon eine geringe Absorption bei einer bestimmten Wellenlänge wird die Intensität des betroffenen Modes zugunsten der anderen Moden verringern. Die Arbeit beschäftigt sich zum einen mit der spektroskopischen Untersuchung zwei- er für die Atemgasdiagnostik relevanter Stoffe, Aceton und das in der Anästhesie häufig eingesetzte Propofol, um das Umfeld, in dem der Laser Verwendung finden soll, zu beleuchten. Diese Untersuchungen flossen in die Entwicklung des später zum Sensor auszubauenden Lasers ein. Für den Laser wurden in der Telekommunikation übliche, glasfaserbasierte, robuste Standardbauteile wie ein optischer Halbleiterverstärker (semiconductor optical amplifier, SOA), Faserkoppler und Faser­Bragg­Gitter verwendet. Die Bauteile wurden charakterisiert. Teilaspekte des Aufbaus wurden mit der Software CAMFR simuliert. Schließlich wurde der Laser als solcher aufgebaut und charakterisiert. Das Ziel der Zweimodigkeit, in einem Intervall von 2 nm durchstimmbar, konnte erreicht werden. An einem vom Heinrich­Hertz­Institut in Berlin entwickelten zweimodigen Halbleiterlasers wurden Untersuchungen der Idee zur Vereinfachung der Messwerterfassung mittels relativen Intensitätsrauschens (relative intensity noise, RIN) durchgeführt. Als Messgröße stellt das RIN die Amplituden der Intensitätsschwankungen des Lasers gegen die Frequenzen der Intensitätsschwankungen als Rauschspektrum dar. Es konnte nachgewiesen werden, dass das Rauschspektrum charakteristisch für das Oszillationsverhalten des Lasers ist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optische Spektrometer sind bekannte Instrumente für viele Anwendungen in Life Sciences, Produktion und Technik aufgrund ihrer guten Selektivität und Sensitivität zusammen mit ihren berührungslosen Messverfahren. MEMS (engl. Micro-electro-mechanical system)-basierten Spektrometer werden als disruptive Technologie betrachtet, in der miniaturisierte Fabry-Pérot Filter als sehr attraktiv für die optische Kommunikation und 'Smart Personal Environments', einschließlich des medizinischen Anwendungen, zu nennen sind. Das Ziel dieser Arbeit ist, durchstimmbare Filter-Arrays mit kostengünstigen Technologien herzustellen. Materialien und technologische Prozesse, die für die Herstellung der Filter-Arrays benötigt werden, wurden untersucht. Im Rahmen dieser Arbeit, wurden durchstimmbare Fabry Pérot Filter-Arrays für den sichtbaren Spektralbereich untersucht, die als Nano-Spektrometer eingesetzt werden. Darüber hinaus wurde ein Modell der numerischen Simulation vorgestellt, die zur Ermittlung eines optimales geometrisches Designs verwendet wurde, wobei sich das Hauptaugenmerk der Untersuchung auf die Durchbiegung der Filtermembranen aufgrund der mechanischen Verspannung der Schichten richtet. Die geometrische Form und Größe der Filtermembranen zusammen mit der Verbindungsbrücken sind von entscheidender Bedeutung, da sie die Durchbiegung beeinflussen. Lange und schmale Verbindungsbrücken führen zur stärkeren Durchbiegung der Filtermembranen. Dieser Effekt wurde auch bei der Vergrößerung der Durchmesser der Membran beobachtet. Die Filter mit spiralige (engl. curl-bent) Verbindungsbrücken führten zu geringerer Deformation als die mit geraden oder gebogenen Verbindungsbrücken. Durchstimmbare Si3N4/SiO2 DBR-basierende Filter-Arrays wurden erfolgreich hergestellt. Eine Untersuchung über die UV-NIL Polymere, die als Opferschicht und Haltepfosten-Material der Filter verwendet wurden, wurde durchgeführt. Die Polymere sind kompatibel zu dem PECVD-Verfahren, das für die Spiegel-Herstellung verwendet wird. Die laterale Strukturierung der DBR-Spiegel mittels des RIE (engl. Reactive Ion Etching)-Prozesses sowie der Unterätz-Prozess im Sauerstoffplasma zur Entfernung der Opferschicht und zum Erreichen der Luftspalt-Kavität, wurden durchgeführt. Durchstimmbare Filter-Arrays zeigten einen Abstimmbereich von 70 nm bei angelegten Spannungen von weniger als 20 V. Optimierungen bei der Strukturierung von TiO2/SiO2 DBR-basierenden Filtern konnte erzielt werden. Mit der CCP (engl. Capacitively Coupling Plasma)-RIE, wurde eine Ätzrate von 20 nm/min erreicht, wobei Fotolack als Ätzmaske diente. Mit der ICP (engl. Inductively Coupling Plasma)-RIE, wurden die Ätzrate von mehr als 60 nm/min mit einem Verhältniss der Ar/SF6 Gasflüssen von 10/10 sccm und Fotolack als Ätzmasken erzielt. Eine Ätzrate von 80 bis 90 nm/min wurde erreicht, hier diente ITO als Ätzmaske. Ausgezeichnete geätzte Profile wurden durch den Ätzprozess unter Verwendung von 500 W ICP/300 W RF-Leistung und Ar/SF6 Gasflüsse von 20/10 sccm erreicht. Die Ergebnisse dieser Arbeit ermöglichen die Realisierung eines breiten Spektralbereichs der Filter-Arrays im Nano-Spektrometer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Selbstbestimmung und -gestaltung des eigenen Alltages gewinnen immer mehr an Bedeutung, insbesondere für ältere Mitmenschen in ländlichen Regionen, die auf ärztliche Versorgung angewiesen sind. Die Schaffung sogenannter smart personal environments mittels einer Vielzahl von, nahezu unsichtbar installierten Sensoren im gewohnten Lebensraum liefert dem Anwender (lebens-) notwendige Informationen über seine Umgebung oder seinen eigenen Körper. Dabei gilt es nicht den Anwender mit technischen Daten, wie Spektren, zu überfordern. Vielmehr sollte die Handhabung so einfach wie möglich gestaltet werden und die ausgewertete Information als Indikationsmittel zum weiteren Handeln dienen. Die Anforderungen an moderne Technologien sind folglich eine starke Miniaturisierung, zur optimalen Integration und Mobilität, bei gleichzeitig hoher Auflösung und Stabilität. Die Zielsetzung der vorliegenden Arbeit ist die Miniaturisierung eines spektroskopischen Systems bei gleichzeitig hohem Auflösungsvermögen für die Detektion im sichtbaren Spektralbereich. Eine Möglichkeit für die Herstellung eines konkurrenzfähigen „Mini-„ oder „Mikrospektrometers“ basiert auf Fabry-Pérot (FP) Filtersystemen, da hierbei die Miniaturisierung nicht wie üblich auf Gittersysteme limitiert ist. Der maßgebliche Faktor für das spektrale Auflösungsvermögen des Spektrometers ist die vertikale Präzision und Homogenität der einzelnen 3D Filterkavitäten, die die unterschiedlichen Transmissionswellenlängen der einzelnen Filter festlegen. Die wirtschaftliche Konkurrenzfähigkeit des am INA entwickelten Nanospektremeters wurde durch die maximale Reduzierung der Prozessschritte, nämlich auf einen einzigen Schritt, erreicht. Erstmalig wird eine neuartige Nanoimprint Technologie, die sog. Substrate Conformal Imprint Lithography, für die Herstellung von wellenlängen-selektierenden Filterkavitäten von stark miniaturisierten Spektrometern eingesetzt. Im Zuge dieser Arbeit wird das Design des FP Filtersystems entwickelt und technologisch mittels Dünnschichtdeposition und der Nanoimprinttechnologie realisiert. Ein besonderer Schwerpunkt liegt hierbei in der Untersuchung des Prägematerials, dessen optische Eigenschaften maßgeblich über die Performance des Filtersystems entscheiden. Mit Hilfe eines speziell gefertigten Mikroskopspektrometers werden die gefertigten Filterfelder hinsichtlich ihrer Transmissionseigenschaften und ihres Auflösungsvermögens hin untersucht. Im Hinblick auf publizierte Arbeiten konkurrierender Arbeitsgruppen konnte eine deutliche Verbesserung des miniaturisierten Spektrometers erreicht werden. Die Minimierung der Prozessschritte auf einen einzigen Prägeschritt sorgt gleichzeitig für eine schnelle und zuverlässige Replikation der wellenlängenselektierenden Filterkavitäten. Im Rahmen dieser Arbeit wurde aufgezeigt, dass das angestrebte Nanospektrometer, trotz der sehr geringen Größe, eine hohe Auflösung liefern kann und gerade wegen der starken Miniaturisierung mit kommerziellen Mini- und Mikro-spektrometern konkurrenzfähig ist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inhalt dieser Arbeit ist ein Verfahren zur numerischen Lösung der zweidimensionalen Flachwassergleichung, welche das Fließverhalten von Gewässern, deren Oberflächenausdehnung wesentlich größer als deren Tiefe ist, modelliert. Diese Gleichung beschreibt die gravitationsbedingte zeitliche Änderung eines gegebenen Anfangszustandes bei Gewässern mit freier Oberfläche. Diese Klasse beinhaltet Probleme wie das Verhalten von Wellen an flachen Stränden oder die Bewegung einer Flutwelle in einem Fluss. Diese Beispiele zeigen deutlich die Notwendigkeit, den Einfluss von Topographie sowie die Behandlung von Nass/Trockenübergängen im Verfahren zu berücksichtigen. In der vorliegenden Dissertation wird ein, in Gebieten mit hinreichender Wasserhöhe, hochgenaues Finite-Volumen-Verfahren zur numerischen Bestimmung des zeitlichen Verlaufs der Lösung der zweidimensionalen Flachwassergleichung aus gegebenen Anfangs- und Randbedingungen auf einem unstrukturierten Gitter vorgestellt, welches in der Lage ist, den Einfluss topographischer Quellterme auf die Strömung zu berücksichtigen, sowie in sogenannten \glqq lake at rest\grqq-stationären Zuständen diesen Einfluss mit den numerischen Flüssen exakt auszubalancieren. Basis des Verfahrens ist ein Finite-Volumen-Ansatz erster Ordnung, welcher durch eine WENO Rekonstruktion unter Verwendung der Methode der kleinsten Quadrate und eine sogenannte Space Time Expansion erweitert wird mit dem Ziel, ein Verfahren beliebig hoher Ordnung zu erhalten. Die im Verfahren auftretenden Riemannprobleme werden mit dem Riemannlöser von Chinnayya, LeRoux und Seguin von 1999 gelöst, welcher die Einflüsse der Topographie auf den Strömungsverlauf mit berücksichtigt. Es wird in der Arbeit bewiesen, dass die Koeffizienten der durch das WENO-Verfahren berechneten Rekonstruktionspolynome die räumlichen Ableitungen der zu rekonstruierenden Funktion mit einem zur Verfahrensordnung passenden Genauigkeitsgrad approximieren. Ebenso wird bewiesen, dass die Koeffizienten des aus der Space Time Expansion resultierenden Polynoms die räumlichen und zeitlichen Ableitungen der Lösung des Anfangswertproblems approximieren. Darüber hinaus wird die wohlbalanciertheit des Verfahrens für beliebig hohe numerische Ordnung bewiesen. Für die Behandlung von Nass/Trockenübergangen wird eine Methode zur Ordnungsreduktion abhängig von Wasserhöhe und Zellgröße vorgeschlagen. Dies ist notwendig, um in der Rechnung negative Werte für die Wasserhöhe, welche als Folge von Oszillationen des Raum-Zeit-Polynoms auftreten können, zu vermeiden. Numerische Ergebnisse die die theoretische Verfahrensordnung bestätigen werden ebenso präsentiert wie Beispiele, welche die hervorragenden Eigenschaften des Gesamtverfahrens in der Berechnung herausfordernder Probleme demonstrieren.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optische Spektroskopie ist eine sehr wichtige Messtechnik mit einem hohen Potential für zahlreiche Anwendungen in der Industrie und Wissenschaft. Kostengünstige und miniaturisierte Spektrometer z.B. werden besonders für moderne Sensorsysteme “smart personal environments” benötigt, die vor allem in der Energietechnik, Messtechnik, Sicherheitstechnik (safety and security), IT und Medizintechnik verwendet werden. Unter allen miniaturisierten Spektrometern ist eines der attraktivsten Miniaturisierungsverfahren das Fabry Pérot Filter. Bei diesem Verfahren kann die Kombination von einem Fabry Pérot (FP) Filterarray und einem Detektorarray als Mikrospektrometer funktionieren. Jeder Detektor entspricht einem einzelnen Filter, um ein sehr schmales Band von Wellenlängen, die durch das Filter durchgelassen werden, zu detektieren. Ein Array von FP-Filter wird eingesetzt, bei dem jeder Filter eine unterschiedliche spektrale Filterlinie auswählt. Die spektrale Position jedes Bandes der Wellenlänge wird durch die einzelnen Kavitätshöhe des Filters definiert. Die Arrays wurden mit Filtergrößen, die nur durch die Array-Dimension der einzelnen Detektoren begrenzt werden, entwickelt. Allerdings erfordern die bestehenden Fabry Pérot Filter-Mikrospektrometer komplizierte Fertigungsschritte für die Strukturierung der 3D-Filter-Kavitäten mit unterschiedlichen Höhen, die nicht kosteneffizient für eine industrielle Fertigung sind. Um die Kosten bei Aufrechterhaltung der herausragenden Vorteile der FP-Filter-Struktur zu reduzieren, wird eine neue Methode zur Herstellung der miniaturisierten FP-Filtern mittels NanoImprint Technologie entwickelt und präsentiert. In diesem Fall werden die mehreren Kavitäten-Herstellungsschritte durch einen einzigen Schritt ersetzt, die hohe vertikale Auflösung der 3D NanoImprint Technologie verwendet. Seit dem die NanoImprint Technologie verwendet wird, wird das auf FP Filters basierende miniaturisierte Spectrometer nanospectrometer genannt. Ein statischer Nano-Spektrometer besteht aus einem statischen FP-Filterarray auf einem Detektorarray (siehe Abb. 1). Jeder FP-Filter im Array besteht aus dem unteren Distributed Bragg Reflector (DBR), einer Resonanz-Kavität und einen oberen DBR. Der obere und untere DBR sind identisch und bestehen aus periodisch abwechselnden dünnen dielektrischen Schichten von Materialien mit hohem und niedrigem Brechungsindex. Die optischen Schichten jeder dielektrischen Dünnfilmschicht, die in dem DBR enthalten sind, entsprechen einen Viertel der Design-Wellenlänge. Jeder FP-Filter wird einer definierten Fläche des Detektorarrays zugeordnet. Dieser Bereich kann aus einzelnen Detektorelementen oder deren Gruppen enthalten. Daher werden die Seitenkanal-Geometrien der Kavität aufgebaut, die dem Detektor entsprechen. Die seitlichen und vertikalen Dimensionen der Kavität werden genau durch 3D NanoImprint Technologie aufgebaut. Die Kavitäten haben Unterschiede von wenigem Nanometer in der vertikalen Richtung. Die Präzision der Kavität in der vertikalen Richtung ist ein wichtiger Faktor, der die Genauigkeit der spektralen Position und Durchlässigkeit des Filters Transmissionslinie beeinflusst.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diese Arbeit thematisiert die optimierte Darstellung von organischen Mikro- und Nanodrähten, Untersuchungen bezüglich deren molekularen Aufbaus und die anwendungsorientierte Charakterisierung der Eigenschaften. Mikro- und Nanodrähte haben in den letzten Jahren im Zuge der Miniaturisierung von Technologien an weitreichendem Interesse gewonnen. Solche eindimensionalen Strukturen, deren Durchmesser im Bereich weniger zehn Nanometer bis zu einigen wenigen Mikrometern liegt, sind Gegenstand intensiver Forschung. Neben anorganischen Ausgangssubstanzen zur Erzeugung von Mikro- und Nanodrähten haben organische Funktionsmaterialien aufgrund ihrer einfachen und kostengünstigen Verarbeitbarkeit sowie ihrer interessanten elektrischen und optischen Eigenschaften an Bedeutung gewonnen. Eine wichtige Materialklasse ist in diesem Zusammenhang die Verbindungsklasse der n-halbleitenden Perylentetracarbonsäurediimide (kurz Perylendiimide). Dem erfolgreichen Einsatz von eindimensionalen Strukturen als miniaturisierte Bausteine geht die optimierte und kontrollierte Herstellung voraus. Im Rahmen der Doktorarbeit wurde die neue Methode der Drahterzeugung „Trocknen unter Lösungsmittelatmosphäre“ entwickelt, welche auf Selbstassemblierung der Substanzmoleküle aus Lösung basiert und unter dem Einfluss von Lösungsmitteldampf direkt auf einem vorgegebenen Substrat stattfindet. Im Gegensatz zu literaturbekannten Methoden ist kein Transfer der Drähte aus einem Reaktionsgefäß nötig und damit verbundene Beschädigungen der Strukturen werden vermieden. Während herkömmliche Methoden in einer unkontrolliert großen Menge von ineinander verwundenen Drähten resultieren, erlaubt die substratbasierte Technik die Bildung voneinander separierter Einzelfasern und somit beispielsweise den Einsatz in Einzelstrukturbauteilen. Die erhaltenen Fasern sind morphologisch sehr gleichmäßig und weisen bei Längen von bis zu 5 mm bemerkenswert hohe Aspektverhältnisse von über 10000 auf. Darüber hinaus kann durch das direkte Drahtwachstum auf dem Substrat über den Einsatz von vorstrukturierten Oberflächen und Wachstumsmasken gerichtetes, lokal beschränktes Drahtwachstum erzielt werden und damit aktive Kontrolle auf Richtung und Wachstumsbereich der makroskopisch nicht handhabbaren Objekte ausgeübt werden. Um das Drahtwachstum auch hinsichtlich der Materialauswahl, d. h. der eingesetzten Ausgangsmaterialien zur Drahterzeugung und somit der resultierenden Eigenschaften der gebildeten Strukturen aktiv kontrollieren zu können, wird der Einfluss unterschiedlicher Parameter auf die Morphologie der Selbstassemblierungsprodukte am Beispiel unterschiedlicher Derivate betrachtet. So stellt sich zum einen die Art der eingesetzten Lösungsmittel in flüssiger und gasförmiger Phase beim Trocknen unter Lösungsmittelatmosphäre als wichtiger Faktor heraus. Beide Lösungsmittel dienen als Interaktionspartner für die Moleküle des funktionellen Drahtmaterials im Selbstassemblierungsprozess. Spezifische Wechselwirkungen zwischen Perylendiimid-Molekülen untereinander und mit Lösungsmittel-Molekülen bestimmen dabei die äußere Form der erhaltenen Strukturen. Ein weiterer wichtiger Faktor ist die Molekülstruktur des verwendeten funktionellen Perylendiimids. Es wird der Einfluss einer Bay-Substitution bzw. einer unsymmetrischen Imid-Substitution auf die Morphologie der erhaltenen Strukturen herausgestellt. Für das detaillierte Verständnis des Zusammenhanges zwischen Molekülstruktur und nötigen Wachstumsbedingungen für die Bildung von eindimensionalen Strukturen zum einen, aber auch die resultierenden Eigenschaften der erhaltenen Aggregationsprodukte zum anderen, sind Informationen über den molekularen Aufbau von großer Bedeutung. Im Rahmen der Doktorarbeit konnte ein molekular hoch geordneter, kristalliner Aufbau der Drähte nachgewiesen werden. Durch Kombination unterschiedlicher Messmethoden ist es gelungen, die molekulare Anordnung in Strukturen aus einem Spirobifluoren-substituierten Derivat in Form einer verkippten Molekülstapelung entlang der Drahtlängsrichtung zu bestimmen. Um mögliche Anwendungsbereiche der erzeugten Drähte aufzuzeigen, wurden diese hinsichtlich ihrer elektrischen und optischen Eigenschaften analysiert. Neben dem potentiellen Einsatz im Bereich von Filteranwendungen und Sensoren, sind vor allem die halbleitenden und optisch wellenleitenden Eigenschaften hervorzuheben. Es konnten organische Transistoren auf der Basis von Einzeldrähten mit im Vergleich zu Dünnschichtbauteilen erhöhten Ladungsträgerbeweglichkeiten präpariert werden. Darüber hinaus wurden die erzeugten eindimensionalen Strukturen als aktive optische Wellenleiter charakterisiert. Die im Rahmen der Dissertation erarbeiteten Kenntnisse bezüglich der Bildung von eindimensionalen Strukturen durch Selbstassemblierung, des Drahtaufbaus und erster anwendungsorientierter Charakterisierung stellen eine Basis zur Weiterentwicklung solcher miniaturisierter Bausteine für unterschiedlichste Anwendungen dar. Die neu entwickelte Methode des Trocknens unter Lösungsmittelatmosphäre ist nicht auf den Einsatz von Perylendiimiden beschränkt, sondern kann auf andere Substanzklassen ausgeweitet werden. Dies eröffnet breite Möglichkeiten der Materialauswahl und somit der Einsatzmöglichkeiten der erhaltenen Strukturen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Das Ziel der vorliegenden Arbeit war die Herstellung und Charakterisierung mikromechanisch durchstimmbarer, dielektrischer Fabry-Pérot-Filter im nahen Infrarot-Bereich bei einer Zentralwellenlänge von λc = 950 nm. Diese Bauelemente wurden auf Basis kostengünstiger Technologien realisiert, dank deren Entwicklung extreme Miniaturisierung und gleichzeitig hohe spektrale Anforderungen möglich sind. Der Vorteil solcher Filter liegt darin, dass sie direkt in einen Photodetektor integriert werden können und mit ganz wenigen Komponenten zu einem kompakten Spektrometermodul zusammengesetzt werden können. Die Baugröße ist nur durch die Größe des Photodetektors limitiert und die gesamte Intensität des einfallenden Lichts kann vorteilhaft auf eine einzelne Filtermembran des Fabry-Pérot-Filters fokussiert werden. Für den Filteraufbau werden zwei hochreflektierende, dielektrische DBR-Spiegel, ein organisches Opferschichtmaterial, welches zur Erzeugung einer Luftkavität im Filter dient, und zwei unterschiedliche Elektroden aus ITO und Aluminium verwendet. Die mikromechanische Auslenkung der freigelegten Filtermembran geschieht mittels elektrostatischer Aktuation, wobei auf diese Weise die Kavitätshöhe des Fabry-Pérot-Filters geändert wird und somit dieser im erforderlichen Spektralbereich optisch durchgestimmt wird. Das in dieser Arbeit gewählte Filterkonzept stellt eine Weiterentwicklung eines bereits bestehenden Filterkonzepts für den sichtbaren Spektralbereich dar. Zum Einen wurden in dieser Arbeit das vertikale und das laterale Design der Filterstrukturen geändert. Eine entscheidende Änderung lag im mikromechanisch beweglichen Teil des Fabry-Pérot-Filters. Dieser schließt den oberen DBR-Spiegel und ein aus dielektrischen Schichten und der oberen Aluminium-Elektrode bestehendes Membranhaltesystem ein, welches später durch Entfernung der Opferschicht freigelegt wird. Die Fläche des DBR-Spiegels wurde auf die Fläche der Filtermembran reduziert und auf dem Membranhaltesystem positioniert. Zum Anderen wurde im Rahmen dieser Arbeit der vertikale Schichtaufbau des Membranhaltesystems variiert und der Einfluss der gewählten Materialien auf die Krümmung der freistehenden Filterstrukturen, auf das Aktuationsverhalten und auf die spektralen Eigenschaften des gesamten Filters untersucht. Der Einfluss der mechanischen Eigenschaften dieser Materialien spielt nämlich eine bedeutende Rolle bei der Erhaltung der erforderlichen optischen Eigenschaften des gesamten Filters. Bevor Fabry-Pérot-Filter ausgeführt wurden, wurde die mechanische Spannung in den einzelnen Materialien des Membranhaltesystems bestimmt. Für die Messung wurde Substratkrümmungsmethode angewendet. Es wurde gezeigt, dass die Plasmaanregungsfrequenzen der plasmaunterstützten chemischen Gasphasenabscheidung bei einer Prozesstemperatur von 120 °C die mechanische Spannung von Si3N4 enorm beeinflussen. Diese Ergebnisse wurden im Membranhaltesystem umgesetzt, wobei verschiedene Filter mit unterschiedlichen mechanischen Eigenschaften des Membranhaltesystems gezeigt wurden. Darüber hinaus wurden optische Eigenschaften der Filter unter dem Einfluss des lateralen Designs der Filterstrukturen untersucht. Bei den realisierten Filtern wurden ein optischer Durchstimmbereich von ca. 70 nm und eine spektrale Auflösung von 5 nm erreicht. Die erreichte Intensität der Transmissionslinie liegt bei 45-60%. Diese Parameter haben für den späteren spektroskopischen Einsatz der realisierten Fabry-Pérot-Filter eine hohe Bedeutung. Die Anwendung soll erstmalig in einem „Proof of Concept“ stattfinden, wobei damit die Oberflächentemperatur eines GaAs-Wafers über die Messung der spektralen Lage seiner Bandlücke bestimmt werden kann.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, optical gain measurement setup based on variable stripe length method is designed, implemented and improved. The setup is characterized using inorganic and organic samples. The optical gain of spiro-quaterphenyl is calculated and compared with measurements from the setup. Films with various thicknesses of spiro-quaterphenyl, methoxy-spiro-quaterphenyl and phenoxy-spiro-quaterphenyl are deposited by a vacuum vapor deposition technique forming asymmetric slab waveguides. The optical properties, laser emission threshold, optical gain and loss coefficient for these films are measured. Additionally, the photodegradation during pumping process is investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In dieser Dissertation werden zunächst Synthesewege zu Spirobigermolen dargestellt. Die Eigenschaften der erfolgreich synthetisierten Spirogermole werden im Anschluss gezeigt. Neben Kristallstrukturanalysen werden auch Ergebnisse aus optischen (Absorption und Fluoreszenz), elektrochemischen (CV und SPEL) und thermischen (TG/DTA und DSC) Messungen veranschaulicht. Besonders vorzuheben ist das selbstorganisierte, vertikale Drahtwachstum von 8,8'-Spirobi[triphenyleno[1,12-bcd]germol], S-TriPGe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diamant ist ein Material mit vielen außerordentlichen Eigenschaften, die ihn zu einem äußerst vielversprechenden Kandidaten für Anwendungen in Wissen-schaft und Technik machen. In den letzten Jahren wurde Diamant häufig als einzigartige Plattform für neue Anwendungen beispielsweise in der Quanteninformationstechnologie (QIT) oder in der Magnetometrie im Nanometermaßstab eingesetzt, wobei einer der wichtigsten lumineszierenden Gitterdefekte im Diamantgitter eingesetzt wird. Dabei handelt es sich um die sogenannten Stickstoff/Fehlenstellen-Farbzentren (NV-Zentren), die im sichtbaren Bereich mit einer absoluten Photostabilität bei Raumtemperatur emittieren. In dieser Arbeit wurden NV-Zentren in Diamantnanokristalliten und –nanosäulen untersucht, die während des Wachstumsprozesses erzeugt wurden. Einzelne Diamantnanokristallite und nanokristalline Diamantschichten (NCD), aus denen Nanosäulen geätzt wurden, wurden mithilfe der Hot Filament Chemical Vapour Deposition (HFCVD) abgeschieden. Zu Vergleichszwecken wurden auch ultrananokristalline Diamantschichten (UNCD) mittels Mikrowellen-CVD (MWCVD) hergestellt. Die Filme wurden sorgfältig in Bezug auf ihre Morphologie, kristallinen Eigenschaften und Zusammensetzung untersucht. Um die Möglichkeit einer Integration dieser Diamantschichten mit temperaturempfindlichen Materialien wie III/V-Halbleitern, Metallen mit niedrigem Schmelzpunkt oder Polymeren zu untersuchen, wurde der Einfluss der Substrattemperatur ermittelt. Eindimensionale NCD- und UNCD-Diamantnanostrukturen wurden mithilfe der Elektronenstrahllithographie (EBL) und reaktivem Ionenätzen in einem induktiv gekoppelten O2-Plasma (ICP-RIE) hergestellt. Zur Vorbereitung wurden zunächst die Ätzraten in Abhängigkeit von den vier wichtigsten Parametern ermittelt. Weitere Erkenntnisse über die Ätzmechanismen wurden durch Ätzexperiment mit unstrukturierten NCD- und UNCD-Schichten erhalten Mittels der EBL konnten mithilfe von Gold-Ätzmasken Nanosäulen mit Durchmessern von 50 nm bis zu 1 μm hergestellt werden.Eine optische Charakterisierung der NCD- und UNCD-Nanosäulen erfolgte mithilfe von Fluorenzenz-Mapping und Photomumineszenz-Spektroskopie. Diese Messungen ergaben, dass in beiden Arten von Säulen NV-Zentren vorhanden sind. Allerdings wurden nur in NCD-Säulen die gewünschten NV--Zentren gefunden, in UNCD-Säulen hingegen nur NV0-Zentren.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eine Halbleiterdiode mit externer Kavität wird um eine Messzelle speziell für Gase erweitert. Diese erlaubt Absorptionsmessungen einer exakt definierten Menge von Gas unter kontrollierten Temperatur- und Druckbedingungen. Es werden konzentrationsabhängige Absorptionsmessungen mit Propofol durchgeführt. Als Ergebnis werden effektive Pfadlänge, Bestimmungs- und Nachweisgrenze berechnet und der Beweis erbracht, dass beide im System anschwingenden Moden in Konkurrenz zueinander stehen. Weiterhin wurde eine ausgeprägte Instabilität von Propofol gegenüber einer großen Anzahl von Werkstoffen entdeckt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Punktförmig messende optische Sensoren zum Erfassen von Oberflächentopografien im Nanometerbereich werden in der Forschung und Industrie benötigt. Dennoch ist die Auswahl unterschiedlicher Technologien und kommerziell verfügbarer Sensoren gering. In dieser Dissertationsschrift werden die wesentlichen Aspekte eines Messsystems untersucht das über das Potenzial verfügt, zu den künftigen Standardmessmethoden zu gehören. Das Messprinzip beruht auf einem Common-Path-Interferometer. In einer mikrooptischen Sonde wird das Laserlicht auf die zu untersuchende Oberfläche gerichtet. Das vom Messobjekt reflektierte Licht interferiert sondenintern mit einem Referenzreflex. Die kompakte Bauweise bewirkt kurze optische Wege und eine gewisse Robustheit gegen Störeinflüsse. Die Abstandsinformation wird durch eine mechanische Oszillation in eine Phasenmodulation überführt. Die Phasenmodulation ermöglicht eine robuste Auswertung des Interferenzsignals, auch wenn eine zusätzliche Amplitudenmodulation vorhanden ist. Dies bietet den Vorteil, unterschiedlich geartete Oberflächen messen zu können, z. B. raue, teilweise transparente und geneigte Oberflächen. Es können wiederholbar Messungen mit einer Standardabweichung unter einem Nanometer erzielt werden. Die beschriebene mechanische Oszillation wird durch ein periodisches elektrisches Signal an einem piezoelektrischen Aktor hervorgerufen, der in einem Biegebalken integriert ist. Die Bauform des Balkens gestattet eine Hybridisierung von optischen und mechanischen Komponenten zu einer Einheit, welche den Weg zur weiteren Miniaturisierung aufzeigt. Im Rahmen dieser Arbeit konnte so u. a. eine Sonde mit einer Bauhöhe unter 10 mm gefertigt werden. Durch eine zweite optische Wellenlänge lässt sich der eingeschränkte Eindeutigkeitsbereich des Laserinterferometers nachweislich vergrößern. Die hierfür eingesetzte Methode, die Stand der Technik ist, konnte erfolgreich problemspezifisch angepasst werden. Um das volle Potenzial des Sensors nutzen zu können, wurden zudem zahlreiche Algorithmen entworfen und erfolgreich getestet. Anhand von hier dokumentierten Messergebnissen können die Möglichkeiten, als auch die Schwächen des Messsystems abgeschätzt werden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intensive, ultrakurze Laserpulse regen Festkörper in einen Zustand an, in dem die Elektronen hohe Temperaturen erlangen, während das Gitter kalt bleibt. Die heißen Elektronen beeinflussen das sog. Laser-angeregte interatomare Potential bzw. die Potentialenergiefläche, auf der die Ionen sich bewegen. Dieses kann neben anderen ultrakurzen Prozessen zu Änderungen der Phononfrequenzen (phonon softening oder phonon hardening) führen. Viele ultrakurze strukturelle Phänomene in Festkörpern hängen bei hohen Laseranregungen von Änderungen der Phononfrequenzen bei niedrigeren Anregungen ab. Um die Laser-bedingten Änderungen des Phononenspektrums von Festkörpern beschreiben zu können, haben wir ein auf Temperatur-abhängiger Dichtefunktionaltheorie basierendes Verfahren entwickelt. Die dramatischen Änderungen nach einer Laseranregung in der Potentialenergiefläche werden durch die starke Veränderung der Zustandsdichte und der Besetzungen der Elektronen hervorgerufen. Diese Änderungen in der Zustandsdichte und den Besetzungszahlen können wir mit unserer Methode berechnen, um dann damit das Verhalten der Phononen nach einer Laseranregung zu analysieren. Auf diese Art und Weise studierten wir den Einfluss einer Anregung mit einem intensiven, ultrakurzen Laserpuls auf repräsentative Phonon Eigenmoden in Magnesium, Kupfer und Aluminium. Wir stellten dabei in manchen Gitterschwingungen entweder eine Abnahme (softening) und in anderen eine Zunahme (hardening) der Eigenfrequenz fest. Manche Moden zeigten bei Variation der Laseranregungsstärke sogar beide Verhaltensweisen. Das eine Phonon-Eigenmode ein hardening und softening zeigen kann, wird durch das Vorhandensein von van Hove Singularitäten in der elektronischen Zustandsdichte des betrachteten Materials erklärt. Für diesen Fall stellt unser Verfahren zusammen mit der Sommerfeld-Entwicklung die Eigenschaften der Festkörper Vibrationen in Verbindung mit den Laser induzierten Veränderungen in den elektronischen Besetzungen für verschiedene Phonon-eingefrorene Atomkonfigurationen. Auch die absolute Größe des softening und hardening wurde berechnet. Wir nehmen an, dass unsere Theorie Licht in die Effekte der Laseranregung von verschiedenen Materialien bringt. Außerdem studierten wir mit Hilfe von Dichtefunktionaltheorie die strukturellen Material-Eigenschaften, die durch kurze XUV Pulse induziert werden. Warme dichte Materie in Ultrakurzpuls angeregten Magnesium wurde analysiert und verglichen mit den Ergebnissen bei durch Laser Anregung bedingten Änderungen. Unter Verwendung von elektronischer-Temperatur-abhängiger Dichtefunktionaltheorie wurden die Änderungen in den Bindungseigenschaften von warmen dichten Magnesium studiert. Wir stellten dabei beide Effekte, Verstärkung und Abschwächung von Bindungen, bei jeweils verschiedenen Phonon Eigenmoden von Magnesium auf Grund von der Erzeugung von Rumpflöchern und dem Vorhandensein von heißen Elektronen fest. Die zusätzliche Erzeugung von heißen Elektronen führt zu einer Änderung der Bindungscharakteristik, die der Änderung, die durch die bereits vorhandenen Rumpflöcher hervorgerufen wurde, entgegen wirkt. Die thermischen Eigenschaften von Nanostrukturen sind teilweise sehr wichtig für elektronische Bauteile. Wir studierten hier ebenfalls den Effekt einer einzelnen Graphen Lage auf Kupfer. Dazu untersuchten wir mit Dichtefunktionaltheorie die strukturellen- und Schwingungseigenschaften von Graphen auf einem Kupfer Substrat. Wir zeigen, dass die schwache Wechselwirkung zwischen Graphen und Kupfer die Frequenz der aus der Ebene gerichteten akustischen Phonon Eigenmode anhebt und die Entartung zwischen den aus der Ebene gerichteten akustischen und optischen Phononen im K-Punkt des Graphen Spektrums aufhebt. Zusätzlich führten wir ab initio Berechnungen zur inelastischen Streuung eines Helium Atoms mit Graphen auf einem Kuper(111) Substrat durch. Wir berechneten dazu das Leistungsspektrum, das uns eine Idee über die verschiedenen Gitterschwingungen des Graphene-Kuper(111) Systems gibt, die durch die Kollision des Helium Atom angeregt werden. Wir brachten die Positionen der Peaks im Leistungsspektrum mit den Phonon Eigenfrequenzen, die wir aus den statischen Rechnungen erhalten haben, in Beziehung. Unsere Ergebnisse werden auch verglichen mit den Ergebnissen experimenteller Daten zur Helium Streuung an Graphen-Kupfer(111) Oberflächen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ziel dieser Dissertation ist es, eine Klasse interferometrischer Messgeräte zu charakterisieren und weiter zu entwickeln. Die Modulation der optischen Weglänge (OPLM) im Referenzarm eines interferometrischen Messsystems ist ein anpassungsfähiger Ansatz. Sie ist zur Messung von Oberflächenprofilen mit einer Auflösung bis in den sub-nm-Bereich bei einem Messbereich von bis zu 100 Mikrometer geeignet. Wird ein statisches Messobjekt gemessen, tritt durch die Modulation im Referenzarm am Detektor ein periodisches Interferenzmuster auf. Dies ist in der unten stehenden Abbildung schematisch dargestellt. Bei einer Veränderung des Abstandes zwischen Objekt und Messgerät kann aus der Phasen- und/oder Hüllkurvenverschiebung im Interferenzmuster die Abstandsänderung abgeleitet werden.Im Rahmen der Arbeit sind zwei funktionsfähige OPLM-Messsysteme entwickelt, aufgebaut und getestet worden. Diese demonstrieren, dass der OPLM-Ansatz ein breites Spektrum an Anwendungen durch eine optische Messung abdecken kann. Allerdings zeigen sich an den Messsystemen auch die Limitierungen des OPLM-Ansatzes. Die Systeme basieren auf einer Punktmessung mittels einer fasergekoppelten Sonde sowie auf einer linienförmigen Messung durch eine Zeilenkamera. Um eine hohe laterale Auflösung zu erzielen, wird die Zeilenkamera mit einem Mikroskop kombiniert. Damit flächenhaft gemessen werden kann, ist es notwendig, Messobjekt und Sensor zueinander zu verschieben. Daher wird eine Theorie entwickelt, unter welchen Randbedingungen bewegte Objekte von einem OPLM-Messsystem aufgelöst werden können. Die Theorie wird anschließend experimentell überprüft und bestätigt. Für die Auswertung der bei der Modulation der optischen Weglänge entstehenden Interferenzen existieren bereits einige erprobte Algorithmen, welche auf ihre Eignung hin untersucht und mit selbst entwickelten Algorithmen verglichen werden. Auch wird darauf eingegangen, welches die zentralen Herausforderungen bei der Planung von OPLM-Interferometern sind und wie sich insbesondere die Wahl des Aktors für die OPLM auf das gesamte Messsystem auswirkt. Bei den beiden Messsystemen werden jeweils wichtige Komponenten wie analoge Elektronik und Aktorik sowie ihre Funktionsweise erläutert. Es wird detailliert beschrieben, wie ein OPLM-Messsystem charakterisiert und kalibriert werden muss, um möglichst zuverlässige Messwerte zu liefern. Abschließend werden die Möglichkeiten der beiden entwickelten Systeme durch Beispielmessungen demonstriert, sowie ihre Messgenauigkeit charakterisiert.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die vorliegende Arbeit befasst sich mit dem lateralen Auflösungsvermögen in der kurzkohärenten Interferenzmikroskopie. Das 3D-Auflösungsvermögen von Phasenobjekten ist im Gegensatz zu dem von Intensitätsobjekten stark nichtlinear und vom spezifischen Messverfahren abhängig. In diesem Zusammenhang sind systematische Messfehler von entscheidender Bedeutung. Für die kurzkohärente Interferenzmikroskopie ist das Überschwingen an Kanten von besonderem Belang, da sich der Effekt bei der Messung vieler technischer Oberflächen negativ auswirkt. Er entsteht durch die Überlagerung von Interferenzsignalen lateral benachbarter Objektpunkte von unterschiedlichen Höhenniveaus. Es wird an speziell für diesen Zweck entwickelten Messsystemen untersucht in wie weit dieser Effekt physikalisch reduziert werden kann und wie sich dies auf die laterale Auflösung auswirkt. An einem für den Einsatz in einer Nanomessmaschine optimierten Linnik-Interferometer wird die Justage eines solchen Systems erläutert. Der Sensor verfügt über die Option mit NUV-Licht betrieben zu werden, um die laterale Auflösung zu verbessern. Aufgrund des Einsatzzweckes ist der Arbeitsabstand relativ groß, was die laterale Auflösung einschränkt. Mit einem zweiten auf die Untersuchungen in dieser Arbeit optimierten Versuchsaufbau können die physikalischen Grenzen der kurzkohärenten Interferenzmikroskopie praktisch untersucht werden. Zu diesem Zweck ist der Aufbau mit einem Mikrospiegelarray ausgestattet, um hierüber variable konfokale Blenden zu schaffen. Mit diesem System wird erstmalig konfokale Mikroskopie mit Weißlichtinterferometrie kombiniert. Durch die optische Selektion der konfokalen Mikroskopie soll die Ursache für die Überschwinger an Kanten reduziert werden. Eine weitere Möglichkeit der Einflussnahme stellt die optionale Beleuchtung mit polarisiertem Licht dar, wodurch die laterale Auflösung weiter gesteigert werden kann. Zusätzlich kann auch dieser Aufbau mit kurzwelligem blauem Licht betrieben werden, um die laterale Auflösung zu optimieren. Die Messergebnisse, die mit diesen Versuchsaufbauten gemacht wurden, zeigen, dass im Gegensatz zu den in der derzeitigen Normung genutzten Modellen das Übertragungsverhalten in der Weißlichtinterferometrie bei der Messung von Phasenobjekten stark nichtlinear ist. Das laterale Auflösungsvermögen deckt sich je nach Auswerteverfahren recht gut mit dem von klassischen Mikroskopen bei der Wiedergabe von Intensitätsobjekten. Für die Untersuchungen wurde überwiegend ein Auflösungsnormal mit neun unterschiedlichen eindimensionalen Rechteckstrukturen verwendet, die eine Nominalhöhe im kritischen Bereich kleiner der Kohärenzlänge der verwendeten Lichtquelle aufweisen. Die Ergebnisse bestätigen sich aber auch an technischen Messobjekten aus der Praxis wie beispielsweise einer „digital video disc“.