994 resultados para Optical images.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluorescence cystoscopy enhances detection of early bladder cancer. Water used to inflate the bladder during the procedure rapidly contains urine, which may contain fluorochromes. This frequently degradesfluorescence images. Samples of bladder washout fluid (BWF) or urine were collected (15 subjects). We studiedtheir fluorescence properties and assessed changes induced by pH (4 to 9) and temperature (15°C to 41°C).A typical fluorescence spectrum of BWF features a main peak (excitation/emission: 320∕420 nm, FWHM =50∕100 nm) and a weaker (5% to 20% of main peak intensity), secondary peak (excitation/emission: 455∕525 nm, FWHM = 80∕50 nm). Interpatient fluctuations of fluorescence intensity are observed. Fluorescence intensity decreases when temperature increases (max 30%) or pH values vary (max 25%). Neither approach is compatible with clinical settings. Fluorescence lifetime measurements suggest that 4-pyridoxic acid/riboflavin is the most likely molecule responsible for urine's main/secondary fluorescence peak. Our measurements give an insight into the spectroscopy of the detrimental background fluorescence. This should be included in the optical design of fluorescence cystoscopes. We estimate that restricting the excitation range from 370-430 nm to 395-415 nm would reduce the BWF background by a factor 2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, the joint exploitation of images acquired daily by remote sensing instruments and of images available from archives allows a detailed monitoring of the transitions occurring at the surface of the Earth. These modifications of the land cover generate spectral discrepancies that can be detected via the analysis of remote sensing images. Independently from the origin of the images and of type of surface change, a correct processing of such data implies the adoption of flexible, robust and possibly nonlinear method, to correctly account for the complex statistical relationships characterizing the pixels of the images. This Thesis deals with the development and the application of advanced statistical methods for multi-temporal optical remote sensing image processing tasks. Three different families of machine learning models have been explored and fundamental solutions for change detection problems are provided. In the first part, change detection with user supervision has been considered. In a first application, a nonlinear classifier has been applied with the intent of precisely delineating flooded regions from a pair of images. In a second case study, the spatial context of each pixel has been injected into another nonlinear classifier to obtain a precise mapping of new urban structures. In both cases, the user provides the classifier with examples of what he believes has changed or not. In the second part, a completely automatic and unsupervised method for precise binary detection of changes has been proposed. The technique allows a very accurate mapping without any user intervention, resulting particularly useful when readiness and reaction times of the system are a crucial constraint. In the third, the problem of statistical distributions shifting between acquisitions is studied. Two approaches to transform the couple of bi-temporal images and reduce their differences unrelated to changes in land cover are studied. The methods align the distributions of the images, so that the pixel-wise comparison could be carried out with higher accuracy. Furthermore, the second method can deal with images from different sensors, no matter the dimensionality of the data nor the spectral information content. This opens the doors to possible solutions for a crucial problem in the field: detecting changes when the images have been acquired by two different sensors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a method for brain atlas deformation inpresence of large space-occupying tumors, based on an apriori model of lesion growth that assumes radialexpansion of the lesion from its starting point. First,an affine registration brings the atlas and the patientinto global correspondence. Then, the seeding of asynthetic tumor into the brain atlas provides a templatefor the lesion. Finally, the seeded atlas is deformed,combining a method derived from optical flow principlesand a model of lesion growth (MLG). Results show that themethod can be applied to the automatic segmentation ofstructures and substructures in brains with grossdeformation, with important medical applications inneurosurgery, radiosurgery and radiotherapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a method for brain atlas deformation in the presence of large space-occupying tumors, based on an a priori model of lesion growth that assumes radial expansion of the lesion from its starting point. Our approach involves three steps. First, an affine registration brings the atlas and the patient into global correspondence. Then, the seeding of a synthetic tumor into the brain atlas provides a template for the lesion. The last step is the deformation of the seeded atlas, combining a method derived from optical flow principles and a model of lesion growth. Results show that a good registration is performed and that the method can be applied to automatic segmentation of structures and substructures in brains with gross deformation, with important medical applications in neurosurgery, radiosurgery, and radiotherapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I, H¿ and [SII] CCD images of the regions around 4 young IRAS sources embedded in the dense molecular cloud cores CB 6, CB 39, AFGL 5142, and L 1251 are presented. Reflection nebulosities are found in all 4 regions. Herbig-Haro objects are detected in AFGL 5142 and L 1251. In both cases, the HH objects are new discoveries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present I-band deep CCD exposures of the fields of galactic plane radio variables. An optical counterpart, based on positional coincidence, has been found for 15 of the 27 observed program objects. The Johnson I magnitude of the sources identified is in the range 18-21.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a method to detect patterns in defocused scenes by means of a joint transform correlator. We describe analytically the correlation plane, and we also introduce an original procedure to recognize the target by postprocessing the correlation plane. The performance of the methodology when the defocused images are corrupted by additive noise is also considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relaxation rates provide important information about tissue microstructure. Multi-parameter mapping (MPM) estimates multiple relaxation parameters from multi-echo FLASH acquisitions with different basic contrasts, i.e., proton density (PD), T1 or magnetization transfer (MT) weighting. Motion can particularly affect maps of the apparent transverse relaxation rate R2(*), which are derived from the signal of PD-weighted images acquired at different echo times. To address the motion artifacts, we introduce ESTATICS, which robustly estimates R2(*) from images even when acquired with different basic contrasts. ESTATICS extends the fitted signal model to account for inherent contrast differences in the PDw, T1w and MTw images. The fit was implemented as a conventional ordinary least squares optimization and as a robust fit with a small or large confidence interval. These three different implementations of ESTATICS were tested on data affected by severe motion artifacts and data with no prominent motion artifacts as determined by visual assessment or fast optical motion tracking. ESTATICS improved the quality of the R2(*) maps and reduced the coefficient of variation for both types of data-with average reductions of 30% when severe motion artifacts were present. ESTATICS can be applied to any protocol comprised of multiple 2D/3D multi-echo FLASH acquisitions as used in the general research and clinical setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation‑based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi‑resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Among the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, have the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical‑based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the sensor of an optical mouse is presented as a counterfeit coin detector applied to the two-Euro case. The detection process is based on the short distance image acquisition capabilities of the optical mouse sensor where partial images of the coin under analysis are compared with some partial reference coin images for matching. Results show that, using only the vision sense, the counterfeit acceptance and rejection rates are very similar to those of a trained user and better than those of an untrained user.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The following paper introduces the work conducted to create a relative virtual mouse based on the interpretation of head movements and face gesture through a low cost camera and the optical flow of the images. This virtual device is designed specifically as an alternative non-contact pointer for people with mobility impairments in the upper extremities and reduced head control. The proposed virtual device was compared with a conventional mouse, a touchpad and a digital joystick. Validation results show performances close to a digital joystick but far away from a conventional mouse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical coherence tomography (OCT) is a promising medical imaging technique that uses light to capture real-time cross-sectional images from biological tissues in micrometer resolution. Commercially available optical coherence tomography systems are employed in diverse applications, including art conservation and diagnostic medicine, notably in cardiology and ophthalmology. Application of this technology in the brain may enable distinction between white matter and gray matter, and obtainment of detailed images from within the encephalon. We present, herein, the in vivo implementation of OCT imaging in the rat brain striatum. For this, two male 60-day-old rats (Rattus norvegicus, Albinus variation, Wistar) were stereotactically implanted with guide cannulas into the striatum to guide a 2.7-French diameter high-definition OCT imaging catheter (Dragonfly™, St. Jude Medical, USA). Obtained images were compared with corresponding histologically stained sections to collect imaging samples. A brief analysis of OCT technology and its current applications is also reported, as well as intra-cerebral OCT feasibility on brain mapping during neurosurgical procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RÉSUMÉ - Les images satellitales multispectrales, notamment celles à haute résolution spatiale (plus fine que 30 m au sol), représentent une source d’information inestimable pour la prise de décision dans divers domaines liés à la gestion des ressources naturelles, à la préservation de l’environnement ou à l’aménagement et la gestion des centres urbains. Les échelles d’étude peuvent aller du local (résolutions plus fines que 5 m) à des échelles régionales (résolutions plus grossières que 5 m). Ces images caractérisent la variation de la réflectance des objets dans le spectre qui est l’information clé pour un grand nombre d’applications de ces données. Or, les mesures des capteurs satellitaux sont aussi affectées par des facteurs « parasites » liés aux conditions d’éclairement et d’observation, à l’atmosphère, à la topographie et aux propriétés des capteurs. Deux questions nous ont préoccupé dans cette recherche. Quelle est la meilleure approche pour restituer les réflectances au sol à partir des valeurs numériques enregistrées par les capteurs tenant compte des ces facteurs parasites ? Cette restitution est-elle la condition sine qua non pour extraire une information fiable des images en fonction des problématiques propres aux différents domaines d’application des images (cartographie du territoire, monitoring de l’environnement, suivi des changements du paysage, inventaires des ressources, etc.) ? Les recherches effectuées les 30 dernières années ont abouti à une série de techniques de correction des données des effets des facteurs parasites dont certaines permettent de restituer les réflectances au sol. Plusieurs questions sont cependant encore en suspens et d’autres nécessitent des approfondissements afin, d’une part d’améliorer la précision des résultats et d’autre part, de rendre ces techniques plus versatiles en les adaptant à un plus large éventail de conditions d’acquisition des données. Nous pouvons en mentionner quelques unes : - Comment prendre en compte des caractéristiques atmosphériques (notamment des particules d’aérosol) adaptées à des conditions locales et régionales et ne pas se fier à des modèles par défaut qui indiquent des tendances spatiotemporelles à long terme mais s’ajustent mal à des observations instantanées et restreintes spatialement ? - Comment tenir compte des effets de « contamination » du signal provenant de l’objet visé par le capteur par les signaux provenant des objets environnant (effet d’adjacence) ? ce phénomène devient très important pour des images de résolution plus fine que 5 m; - Quels sont les effets des angles de visée des capteurs hors nadir qui sont de plus en plus présents puisqu’ils offrent une meilleure résolution temporelle et la possibilité d’obtenir des couples d’images stéréoscopiques ? - Comment augmenter l’efficacité des techniques de traitement et d’analyse automatique des images multispectrales à des terrains accidentés et montagneux tenant compte des effets multiples du relief topographique sur le signal capté à distance ? D’autre part, malgré les nombreuses démonstrations par des chercheurs que l’information extraite des images satellitales peut être altérée à cause des tous ces facteurs parasites, force est de constater aujourd’hui que les corrections radiométriques demeurent peu utilisées sur une base routinière tel qu’est le cas pour les corrections géométriques. Pour ces dernières, les logiciels commerciaux de télédétection possèdent des algorithmes versatiles, puissants et à la portée des utilisateurs. Les algorithmes des corrections radiométriques, lorsqu’ils sont proposés, demeurent des boîtes noires peu flexibles nécessitant la plupart de temps des utilisateurs experts en la matière. Les objectifs que nous nous sommes fixés dans cette recherche sont les suivants : 1) Développer un logiciel de restitution des réflectances au sol tenant compte des questions posées ci-haut. Ce logiciel devait être suffisamment modulaire pour pouvoir le bonifier, l’améliorer et l’adapter à diverses problématiques d’application d’images satellitales; et 2) Appliquer ce logiciel dans différents contextes (urbain, agricole, forestier) et analyser les résultats obtenus afin d’évaluer le gain en précision de l’information extraite par des images satellitales transformées en images des réflectances au sol et par conséquent la nécessité d’opérer ainsi peu importe la problématique de l’application. Ainsi, à travers cette recherche, nous avons réalisé un outil de restitution de la réflectance au sol (la nouvelle version du logiciel REFLECT). Ce logiciel est basé sur la formulation (et les routines) du code 6S (Seconde Simulation du Signal Satellitaire dans le Spectre Solaire) et sur la méthode des cibles obscures pour l’estimation de l’épaisseur optique des aérosols (aerosol optical depth, AOD), qui est le facteur le plus difficile à corriger. Des améliorations substantielles ont été apportées aux modèles existants. Ces améliorations concernent essentiellement les propriétés des aérosols (intégration d’un modèle plus récent, amélioration de la recherche des cibles obscures pour l’estimation de l’AOD), la prise en compte de l’effet d’adjacence à l’aide d’un modèle de réflexion spéculaire, la prise en compte de la majorité des capteurs multispectraux à haute résolution (Landsat TM et ETM+, tous les HR de SPOT 1 à 5, EO-1 ALI et ASTER) et à très haute résolution (QuickBird et Ikonos) utilisés actuellement et la correction des effets topographiques l’aide d’un modèle qui sépare les composantes directe et diffuse du rayonnement solaire et qui s’adapte également à la canopée forestière. Les travaux de validation ont montré que la restitution de la réflectance au sol par REFLECT se fait avec une précision de l’ordre de ±0.01 unités de réflectance (pour les bandes spectrales du visible, PIR et MIR), même dans le cas d’une surface à topographie variable. Ce logiciel a permis de montrer, à travers des simulations de réflectances apparentes à quel point les facteurs parasites influant les valeurs numériques des images pouvaient modifier le signal utile qui est la réflectance au sol (erreurs de 10 à plus de 50%). REFLECT a également été utilisé pour voir l’importance de l’utilisation des réflectances au sol plutôt que les valeurs numériques brutes pour diverses applications courantes de la télédétection dans les domaines des classifications, du suivi des changements, de l’agriculture et de la foresterie. Dans la majorité des applications (suivi des changements par images multi-dates, utilisation d’indices de végétation, estimation de paramètres biophysiques, …), la correction des images est une opération cruciale pour obtenir des résultats fiables. D’un point de vue informatique, le logiciel REFLECT se présente comme une série de menus simples d’utilisation correspondant aux différentes étapes de saisie des intrants de la scène, calcul des transmittances gazeuses, estimation de l’AOD par la méthode des cibles obscures et enfin, l’application des corrections radiométriques à l’image, notamment par l’option rapide qui permet de traiter une image de 5000 par 5000 pixels en 15 minutes environ. Cette recherche ouvre une série de pistes pour d’autres améliorations des modèles et méthodes liés au domaine des corrections radiométriques, notamment en ce qui concerne l’intégration de la FDRB (fonction de distribution de la réflectance bidirectionnelle) dans la formulation, la prise en compte des nuages translucides à l’aide de la modélisation de la diffusion non sélective et l’automatisation de la méthode des pentes équivalentes proposée pour les corrections topographiques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’érosion éolienne est un problème environnemental parmi les plus sévères dans les régions arides, semi-arides et les régions sèches sub-humides de la planète. L’érosion des sols accélérée par le vent provoque des dommages à la fois localement et régionalement. Sur le plan local, elle cause la baisse des nutriments par la mobilisation des particules les plus fines et de la matière organique. Cette mobilisation est une des causes de perte de fertilité des sols avec comme conséquence, une chute de la productivité agricole et une réduction de la profondeur de la partie arable. Sur le plan régional, les tempêtes de poussières soulevées par le vent ont un impact non négligeable sur la santé des populations, et la déposition des particules affecte les équipements hydrauliques tels que les canaux à ciel ouvert ainsi que les infrastructures notamment de transport. Dans les régions où les sols sont fréquemment soumis à l’érosion éolienne, les besoins pour des études qui visent à caractériser spatialement les sols selon leur degré de vulnérabilité sont grands. On n’a qu’à penser aux autorités administratives qui doivent décider des mesures à prendre pour préserver et conserver les potentialités agropédologiques des sols, souvent avec des ressources financières modestes mises à leur disposition. Or, dans certaines de ces régions, comme notre territoire d’étude, la région de Thiès au Sénégal, ces études font défaut. En effet, les quelques études effectuées dans cette région ou dans des contextes géographiques similaires ont un caractère plutôt local et les approches suivies (modèles de pertes des sols) nécessitent un nombre substantiel de données pour saisir la variabilité spatiale de la dynamique des facteurs qui interviennent dans le processus de l’érosion éolienne. La disponibilité de ces données est particulièrement problématique dans les pays en voie de développement, à cause de la pauvreté en infrastructures et des problèmes de ressources pour le monitoring continu des variables environnementales. L’approche mise de l’avant dans cette recherche vise à combler cette lacune en recourant principalement à l’imagerie satellitale, et plus particulièrement celle provenant des satellites Landsat-5 et Landsat-7. Les images Landsat couvrent la presque totalité de la zone optique du spectre exploitable par télédétection (visible, proche infrarouge, infrarouge moyen et thermique) à des résolutions relativement fines (quelques dizaines de mètres). Elles permettant ainsi d’étudier la distribution spatiale des niveaux de vulnérabilité des sols avec un niveau de détails beaucoup plus fin que celui obtenu avec des images souvent utilisées dans des études environnementales telles que AVHRR de la série de satellites NOAA (résolution kilométrique). De plus, l’archive complet des images Landsat-5 et Landsat-7 couvrant une période de plus de 20 ans est aujourd’hui facilement accessible. Parmi les paramètres utilisés dans les modèles d’érosion éolienne, nous avons identifiés ceux qui sont estimables par l’imagerie satellitale soit directement (exemple, fraction du couvert végétal) soit indirectement (exemple, caractérisation des sols par leur niveau d’érodabilité). En exploitant aussi le peu de données disponibles dans la région (données climatiques, carte morphopédologique) nous avons élaboré une base de données décrivant l’état des lieux dans la période de 1988 à 2002 et ce, selon les deux saisons caractéristiques de la région : la saison des pluies et la saison sèche. Ces données par date d’acquisition des images Landsat utilisées ont été considérées comme des intrants (critères) dans un modèle empirique que nous avons élaboré en modulant l’impact de chacun des critères (poids et scores). À l’aide de ce modèle, nous avons créé des cartes montrant les degrés de vulnérabilité dans la région à l’étude, et ce par date d’acquisition des images Landsat. Suite à une série de tests pour valider la cohérence interne du modèle, nous avons analysé nos cartes afin de conclure sur la dynamique du processus pendant la période d’étude. Nos principales conclusions sont les suivantes : 1) le modèle élaboré montre une bonne cohérence interne et est sensible aux variations spatiotemporelles des facteurs pris en considération 2); tel qu’attendu, parmi les facteurs utilisés pour expliquer la vulnérabilité des sols, la végétation vivante et l’érodabilité sont les plus importants ; 3) ces deux facteurs présentent une variation importante intra et inter-saisonnière de sorte qu’il est difficile de dégager des tendances à long terme bien que certaines parties du territoire (Nord et Est) aient des indices de vulnérabilité forts, peu importe la saison ; 4) l’analyse diachronique des cartes des indices de vulnérabilité confirme le caractère saisonnier des niveaux de vulnérabilité dans la mesure où les superficies occupées par les faibles niveaux de vulnérabilité augmentent en saison des pluies, donc lorsque l’humidité surfacique et la végétation active notamment sont importantes, et décroissent en saison sèche ; 5) la susceptibilité, c’est-à-dire l’impact du vent sur la vulnérabilité est d’autant plus forte que la vitesse du vent est élevée et que la vulnérabilité est forte. Sur les zones où la vulnérabilité est faible, les vitesses de vent élevées ont moins d’impact. Dans notre étude, nous avons aussi inclus une analyse comparative entre les facteurs extraits des images Landsat et celles des images hyperspectrales du satellite expérimental HYPERION. Bien que la résolution spatiale de ces images soit similaire à celle de Landsat, les résultats obtenus à partir des images HYPERION révèlent un niveau de détail supérieur grâce à la résolution spectrale de ce capteur permettant de mieux choisir les bandes spectrales qui réagissent le plus avec le facteur étudié. Cette étude comparative démontre que dans un futur rapproché, l’amélioration de l’accessibilité à ce type d’images permettra de raffiner davantage le calcul de l’indice de vulnérabilité par notre modèle. En attendant cette possibilité, on peut de contenter de l’imagerie Landsat qui offre un support d’informations permettant tout de même d’évaluer le niveau de fragilisation des sols par l’action du vent et par la dynamique des caractéristiques des facteurs telles que la couverture végétale aussi bien vivante que sénescente.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large scale image mosaicing methods are in great demand among scientists who study different aspects of the seabed, and have been fostered by impressive advances in the capabilities of underwater robots in gathering optical data from the seafloor. Cost and weight constraints mean that lowcost Remotely operated vehicles (ROVs) usually have a very limited number of sensors. When a low-cost robot carries out a seafloor survey using a down-looking camera, it usually follows a predetermined trajectory that provides several non time-consecutive overlapping image pairs. Finding these pairs (a process known as topology estimation) is indispensable to obtaining globally consistent mosaics and accurate trajectory estimates, which are necessary for a global view of the surveyed area, especially when optical sensors are the only data source. This thesis presents a set of consistent methods aimed at creating large area image mosaics from optical data obtained during surveys with low-cost underwater vehicles. First, a global alignment method developed within a Feature-based image mosaicing (FIM) framework, where nonlinear minimisation is substituted by two linear steps, is discussed. Then, a simple four-point mosaic rectifying method is proposed to reduce distortions that might occur due to lens distortions, error accumulation and the difficulties of optical imaging in an underwater medium. The topology estimation problem is addressed by means of an augmented state and extended Kalman filter combined framework, aimed at minimising the total number of matching attempts and simultaneously obtaining the best possible trajectory. Potential image pairs are predicted by taking into account the uncertainty in the trajectory. The contribution of matching an image pair is investigated using information theory principles. Lastly, a different solution to the topology estimation problem is proposed in a bundle adjustment framework. Innovative aspects include the use of fast image similarity criterion combined with a Minimum spanning tree (MST) solution, to obtain a tentative topology. This topology is improved by attempting image matching with the pairs for which there is the most overlap evidence. Unlike previous approaches for large-area mosaicing, our framework is able to deal naturally with cases where time-consecutive images cannot be matched successfully, such as completely unordered sets. Finally, the efficiency of the proposed methods is discussed and a comparison made with other state-of-the-art approaches, using a series of challenging datasets in underwater scenarios