947 resultados para Optical frequency conversion


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A simple method for absolute frequency measurements of molecular transitions in the mid-infrared region is reported. The method is based on a cw singly-resonant optical parametric oscillator (SRO), which is tunable from 3.2 to 3.45 µm. The mid- infrared frequency of the SRO is referenced to an optical frequency comb through its pump and signal beams. Sub-Doppler spectroscopy and absolute frequency measurement of the P(7) transition of the ν3 band of CH4 are demonstrated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis explores the design, construction, and applications of the optoelectronic swept-frequency laser (SFL). The optoelectronic SFL is a feedback loop designed around a swept-frequency (chirped) semiconductor laser (SCL) to control its instantaneous optical frequency, such that the chirp characteristics are determined solely by a reference electronic oscillator. The resultant system generates precisely controlled optical frequency sweeps. In particular, we focus on linear chirps because of their numerous applications. We demonstrate optoelectronic SFLs based on vertical-cavity surface-emitting lasers (VCSELs) and distributed-feedback lasers (DFBs) at wavelengths of 1550 nm and 1060 nm. We develop an iterative bias current predistortion procedure that enables SFL operation at very high chirp rates, up to 10^16 Hz/sec. We describe commercialization efforts and implementation of the predistortion algorithm in a stand-alone embedded environment, undertaken as part of our collaboration with Telaris, Inc. We demonstrate frequency-modulated continuous-wave (FMCW) ranging and three-dimensional (3-D) imaging using a 1550 nm optoelectronic SFL.

We develop the technique of multiple source FMCW (MS-FMCW) reflectometry, in which the frequency sweeps of multiple SFLs are "stitched" together in order to increase the optical bandwidth, and hence improve the axial resolution, of an FMCW ranging measurement. We demonstrate computer-aided stitching of DFB and VCSEL sweeps at 1550 nm. We also develop and demonstrate hardware stitching, which enables MS-FMCW ranging without additional signal processing. The culmination of this work is the hardware stitching of four VCSELs at 1550 nm for a total optical bandwidth of 2 THz, and a free-space axial resolution of 75 microns.

We describe our work on the tomographic imaging camera (TomICam), a 3-D imaging system based on FMCW ranging that features non-mechanical acquisition of transverse pixels. Our approach uses a combination of electronically tuned optical sources and low-cost full-field detector arrays, completely eliminating the need for moving parts traditionally employed in 3-D imaging. We describe the basic TomICam principle, and demonstrate single-pixel TomICam ranging in a proof-of-concept experiment. We also discuss the application of compressive sensing (CS) to the TomICam platform, and perform a series of numerical simulations. These simulations show that tenfold compression is feasible in CS TomICam, which effectively improves the volume acquisition speed by a factor ten.

We develop chirped-wave phase-locking techniques, and apply them to coherent beam combining (CBC) of chirped-seed amplifiers (CSAs) in a master oscillator power amplifier configuration. The precise chirp linearity of the optoelectronic SFL enables non-mechanical compensation of optical delays using acousto-optic frequency shifters, and its high chirp rate simultaneously increases the stimulated Brillouin scattering (SBS) threshold of the active fiber. We characterize a 1550 nm chirped-seed amplifier coherent-combining system. We use a chirp rate of 5*10^14 Hz/sec to increase the amplifier SBS threshold threefold, when compared to a single-frequency seed. We demonstrate efficient phase-locking and electronic beam steering of two 3 W erbium-doped fiber amplifier channels, achieving temporal phase noise levels corresponding to interferometric fringe visibilities exceeding 98%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Semiconductor technology scaling has enabled drastic growth in the computational capacity of integrated circuits (ICs). This constant growth drives an increasing demand for high bandwidth communication between ICs. Electrical channel bandwidth has not been able to keep up with this demand, making I/O link design more challenging. Interconnects which employ optical channels have negligible frequency dependent loss and provide a potential solution to this I/O bandwidth problem. Apart from the type of channel, efficient high-speed communication also relies on generation and distribution of multi-phase, high-speed, and high-quality clock signals. In the multi-gigahertz frequency range, conventional clocking techniques have encountered several design challenges in terms of power consumption, skew and jitter. Injection-locking is a promising technique to address these design challenges for gigahertz clocking. However, its small locking range has been a major contributor in preventing its ubiquitous acceptance.

In the first part of this dissertation we describe a wideband injection locking scheme in an LC oscillator. Phase locked loop (PLL) and injection locking elements are combined symbiotically to achieve wide locking range while retaining the simplicity of the latter. This method does not require a phase frequency detector or a loop filter to achieve phase lock. A mathematical analysis of the system is presented and the expression for new locking range is derived. A locking range of 13.4 GHz–17.2 GHz (25%) and an average jitter tracking bandwidth of up to 400 MHz are measured in a high-Q LC oscillator. This architecture is used to generate quadrature phases from a single clock without any frequency division. It also provides high frequency jitter filtering while retaining the low frequency correlated jitter essential for forwarded clock receivers.

To improve the locking range of an injection locked ring oscillator; QLL (Quadrature locked loop) is introduced. The inherent dynamics of injection locked quadrature ring oscillator are used to improve its locking range from 5% (7-7.4GHz) to 90% (4-11GHz). The QLL is used to generate accurate clock phases for a four channel optical receiver using a forwarded clock at quarter-rate. The QLL drives an injection locked oscillator (ILO) at each channel without any repeaters for local quadrature clock generation. Each local ILO has deskew capability for phase alignment. The optical-receiver uses the inherent frequency to voltage conversion provided by the QLL to dynamically body bias its devices. A wide locking range of the QLL helps to achieve a reliable data-rate of 16-32Gb/s and adaptive body biasing aids in maintaining an ultra-low power consumption of 153pJ/bit.

From the optical receiver we move on to discussing a non-linear equalization technique for a vertical-cavity surface-emitting laser (VCSEL) based optical transmitter, to enable low-power, high-speed optical transmission. A non-linear time domain optical model of the VCSEL is built and evaluated for accuracy. The modelling shows that, while conventional FIR-based pre-emphasis works well for LTI electrical channels, it is not optimum for the non-linear optical frequency response of the VCSEL. Based on the simulations of the model an optimum equalization methodology is derived. The equalization technique is used to achieve a data-rate of 20Gb/s with power efficiency of 0.77pJ/bit.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

基于能量守恒和三波耦合波方程, 建立了超短脉冲在参变过程中二次谐波产生时的I类和II类相位匹配条件、基波与谐波之间的群速延迟时间、以及群速失配对晶体长度限制的理论基础。以负单轴非线性光学晶体CsLiB6O10为例, 分析和数值计算了超短脉冲宽度为100 fs时, 谐波的群速匹配长度随基波波长变化的规律。研究结果表明在I类相位匹配条件下, 基波波长为642 nm时, 群速延迟最小, 相应的群速匹配晶体长度最长为19.1 mm;在II类相位匹配条件下, 基波波长为767 nm, 群速延迟最小, 群速匹配长度最

Relevância:

90.00% 90.00%

Publicador:

Resumo:

报道了一种MOPA式国产单频光纤放大器。该放大器采用连续波单频激光器作为主振荡器,采用我国自行设计和制造的大模场面积掺Yb双包层光纤作为功率放大器,在波长1064 nm处实现了最高7.3 W的连续激光输出,斜率效率为39%,光-光转换效率为26%。此外,对光谱特性及放大的自发发射的抑制也进行了探讨。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An integrated semiconductor optical amplifier/distributed feedback (SOA/DFB) laser that show promise as a simple all-optical wavelength conversion device together with useful simultaneous functions such as 2R regeneration and the ability to remove a wavelength identifying tone is presented. Wavelength conversion performance at 20Gb/s and 40Gb/s can be obtained with this laser.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a comprehensive numerical study on the all-optical wavelength conversion based on the degenerate four-wave-mixing with continuous-wave pumping in the silicon nanowire waveguide. It is well known that the conversion efficiency and the 3-dB bandwidth can be greatly affected by the phase-matching condition. Through proper design of the waveguide cross-section, its dispersion property can be adjusted to satisfy the phase-matching condition and therefore effective wavelength conversion can be achieved in a large wavelength range. Generally, the group velocity dispersion plays a dominant role in the wavelength conversion. However, the fourth-order dispersion takes an important effect on the wavelength conversion when the group velocity dispersion is near the zero-point. Furthermore, the conversion efficiency and the 3-dB bandwidth can also be affected by the interactive length and the initial pump power. Through the numerical simulation, the optimal values for the interactive length and the initial pump power, which are functions of the propagation loss, are obtained to realize the maximum conversion efficiency. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mode-locked semiconductor lasers are compact pulsed sources with ultra-narrow pulse widths and high repetition-rates. In order to use these sources in real applications, their performance needs to be optimised in several aspects, usually by external control. We experimentally investigate the behaviour of recently-developed quantum-dash mode-locked lasers (QDMLLs) emitting at 1.55 μm under external optical injection. Single-section and two-section lasers with different repetition frequencies and active-region structures are studied. Particularly, we are interested in a regime which the laser remains mode-locked and the individual modes are simultaneously phase-locked to the external laser. Injection-locked self-mode-locked lasers demonstrate tunable microwave generation at first or second harmonic of the free-running repetition frequency with sub-MHz RF linewidth. For two-section mode-locked lasers, using dual-mode optical injection (injection of two coherent CW lines), narrowing the RF linewidth close to that of the electrical source, narrowing the optical linewidths and reduction in the time-bandwidth product is achieved. Under optimised bias conditions of the slave laser, a repetition frequency tuning ratio >2% is achieved, a record for a monolithic semiconductor mode-locked laser. In addition, we demonstrate a novel all-optical stabilisation technique for mode-locked semiconductor lasers by combination of CW optical injection and optical feedback to simultaneously improve the time-bandwidth product and timing-jitter of the laser. This scheme does not need an RF source and no optical to electrical conversion is required and thus is ideal for photonic integration. Finally, an application of injection-locked mode-locked lasers is introduced in a multichannel phase-sensitive amplifier (PSA). We show that with dual-mode injection-locking, simultaneous phase-synchronisation of two channels to local pump sources is realised through one injection-locking stage. An experimental proof of concept is demonstrated for two 10 Gbps phase-encoded (DPSK) channels showing more than 7 dB phase-sensitive gain and less than 1 dB penalty of the receiver sensitivity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Photonic integration has become an important research topic in research for applications in the telecommunications industry. Current optical internet infrastructure has reached capacity with current generation dense wavelength division multiplexing (DWDM) systems fully occupying the low absorption region of optical fibre from 1530 nm to 1625 nm (the C and L bands). This is both due to an increase in the number of users worldwide and existing users demanding more bandwidth. Therefore, current research is focussed on using the available telecommunication spectrum more efficiently. To this end, coherent communication systems are being developed. Advanced coherent modulation schemes can be quite complex in terms of the number and array of devices required for implementation. In order to make these systems viable both logistically and commercially, photonic integration is required. In traditional DWDM systems, arrayed waveguide gratings (AWG) are used to both multiplex and demultiplex the multi-wavelength signal involved. AWGs are used widely as they allow filtering of the many DWDM wavelengths simultaneously. However, when moving to coherent telecommunication systems such as coherent optical frequency division multiplexing (OFDM) smaller FSR ranges are required from the AWG. This increases the size of the device which is counter to the miniaturisation which integration is trying to achieve. Much work was done with active filters during the 1980s. This involved using a laser device (usually below threshold) to allow selective wavelength filtering of input signals. By using more complicated cavity geometry devices such as distributed feedback (DFB) and sampled grating distributed Bragg gratings (SG-DBR) narrowband filtering is achievable with high suppression (>30 dB) of spurious wavelengths. The active nature of the devices also means that, through carrier injection, the index can be altered resulting in tunability of the filter. Used above threshold, active filters become useful in filtering coherent combs. Through injection locking, the coherence of the filtered wavelengths with the original comb source is retained. This gives active filters potential application in coherent communication system as demultiplexers. This work will focus on the use of slotted Fabry-Pérot (SFP) semiconductor lasers as active filters. Experiments were carried out to ensure that SFP lasers were useful as tunable active filters. In all experiments in this work the SFP lasers were operated above threshold and so injection locking was the mechanic by which the filters operated. Performance of the lasers under injection locking was examined using both single wavelength and coherent comb injection. In another experiment two discrete SFP lasers were used simultaneously to demultiplex a two-line coherent comb. The relative coherence of the comb lines was retained after demultiplexing. After showing that SFP lasers could be used to successfully demultiplex coherent combs a photonic integrated circuit was designed and fabricated. This involved monolithic integration of a MMI power splitter with an array of single facet SFP lasers. This device was tested much in the same way as the discrete devices. The integrated device was used to successfully demultiplex a two line coherent comb signal whilst retaining the relative coherence between the filtered comb lines. A series of modelling systems were then employed in order to understand the resonance characteristics of the fabricated devices, and to understand their performance under injection locking. Using this information, alterations to the SFP laser designs were made which were theoretically shown to provide improved performance and suitability for use in filtering coherent comb signals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An overview on high-resolution and fast interrogation of optical-fiber sensors relying on laser reflection spectroscopy is given. Fiber Bragg-gratings (FBGs) and FBG resonators built in fibers of different types are used for strain, temperature and acceleration measurements using heterodyne-detection and optical frequency-locking techniques. Silica fiber-ring cavities are used for chemical sensing based on evanescent-wave spectroscopy. Various arrangements for signal recovery and noise reduction, as an extension of most typical spectroscopic techniques, are illustrated and results on detection performances are presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The basic concepts and phenomenology of wave mixing and harmonic generation are reviewed in context of the recent advances in the enhanced nonlinear activity in metamaterials and photonic crystals. The effects of dispersion, field confinement and phase synchronism are illustrated by the examples of the on-purpose designed artificial nonlinear structures. (c) 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE 22:469482, 2012.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The vibrational configuration interaction method used to obtain static vibrational (hyper)polarizabilities is extended to dynamic nonlinear optical properties in the infinite optical frequency approximation. Illustrative calculations are carried out on H2 O and N H3. The former molecule is weakly anharmonic while the latter contains a strongly anharmonic umbrella mode. The effect on vibrational (hyper)polarizabilities due to various truncations of the potential energy and property surfaces involved in the calculation are examined

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a detailed case study of the characteristics of auroral forms that constitute the first ionospheric signatures of substorm expansion phase onset. Analysis of the optical frequency and along-arc (azimuthal) wave number spectra provides the strongest constraint to date on the potential mechanisms and instabilities in the near-Earth magnetosphere that accompany auroral onset and which precede poleward arc expansion and auroral breakup. We evaluate the frequency and growth rates of the auroral forms as a function of azimuthal wave number to determine whether these wave characteristics are consistent with current models of the substorm onset mechanism. We find that the frequency, spatial scales, and growth rates of the auroral forms are most consistent with the cross-field current instability or a ballooning instability, most likely triggered close to the inner edge of the ion plasma sheet. This result is supportive of a near-Earth plasma sheet initiation of the substorm expansion phase. We also present evidence that the frequency and phase characteristics of the auroral undulations may be generated via resonant processes operating along the geomagnetic field. Our observations provide the most powerful constraint to date on the ionospheric manifestation of the physical processes operating during the first few minutes around auroral substorm onset.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Z-scan technique is employed to obtain the nonlinear refractive index (n (2)) of the Ca(4)REO(BO(3))(3) (RECOB, where RE = Gd and La) single crystals using 30 fs laser pulses centered at 780 nm for the two orthogonal orientations determined by the optical axes (X and Z) relative to the direction of propagation of the laser beam (k//Y// crystallographic b-axis). The large values of n (2) indicate that both GdCOB and LaCOB are potential hosts for Yb:RECOB lasers operating in the Kerr-lens mode locking (KLM) regime.