920 resultados para Optic Vesicle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of the linear electro?optic effect in single crystals of the organic compound, 4?nitro�4??methylbenzylidene aniline is reported. The reduced half?wave voltages have been found to have values 2.8, 1.3, and 1.1 kV at 632.8, 514.5, and 488.0 nm, respectively and the corresponding values of the largest linear electro?optic coefficient have been calculated. The thermal variation of the birefringence has also been investigated and the temperature variation of the refractive index difference is found to have the value, d?n/dT = 15.8 × 10?5 K?1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Code Division Multiple Access (CDMA) techniques, by far, had been applied to LAN problems by many investigators, An analytical study of well known algorithms for generation of Orthogonal codes used in FO-CDMA systems like those for prime, quasi-Prime, Optical Orthogonal and Matrix codes has been presented, Algorithms for OOCs like Greedy/Modified Greedy/Accelerated Greedy algorithms are implemented. Many speed-up enhancements. for these algorithms are suggested. A novel Synthetic Algorithm based on Difference Sets (SADS) is also proposed. Investigations are made to vectorise/parallelise SADS to implement the source code on parallel machines. A new matrix for code families of OOCs with different seed code-words but having the same (n,w,lambda) set is formulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three new cationic amphiphiles bearing anthraquinone moieties at the polar headgroup region were synthesized, The single-chain amphiphile, N,N-dimethyl-N-octadecyl-N-(9,10-dihydro dioxoanthracen-2-ylmethyl)ammonium bromide 1, in the presence of cetyltrimethylammonium bromide upon dispersion in water gave co-micellar aggregates containing covalently attached anthraquinone residues at the polar aqueous interfaces. The other two double-chain amphiphiles, N,N-dioctadecyl-N-methyl-N-(9,10-dihydro-9,10-dioxoanthracen-2-ylmethyl)ammonium bromide 2 and N,N-dimethyl-N-(1,2-bispalmitoyloxypropanyl)-N-(9,10-dihydro-9,10-dioxanthracen-2-ylmethyl)ammonium bromide 3, however, on dispersion in aqueous media produced vesicular aggregates. The critical temperatures for the gel to liquid-crystalline-like phase transition processes for the vesicular systems were determined by following temperature-dependent changes in the ratios of keto-enol tautomeric forms of benzoylacetanilide doped within respective. vesicular assemblies. The redox chemistry of the these supramolecular assemblies was also studied by following the time-dependent changes in the ITV-VIS absorption spectroscopy in the presence of exogenous reducing or oxidizing agents, Electrochemical studies using glassy carbon electrodes reveal that redox-active amphiphiles adsorb on to the glassy carbon surfaces to form electroactive deposits when dipped into aqueous suspensions of either of these aggregates irrespective of the micellar or vesicular nature of the dispersions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eight new vesicle-forming dimeric surfactants are synthesized: the polar headgroup separation in such dimeric amphiphiles strongly influences their vesicular thermotropic phase-transition behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a technique for precise measurement of small magnetic fields using nonlinear magneto-optic rotation (NMOR). The technique relies on the resonant laser beam being chopped. During the on time, the atoms are optically pumped into an aligned ground state (Delta m=2 coherence). During the off time, they freely precess around the magnetic field at the Larmor frequency. If the on-off modulation frequency matches (twice) the Larmor precession frequency, the rotation is resonantly enhanced in every cycle, thereby making the process like a repeated Ramsey measurement of the Larmor frequency. We study chopped-NMOR in a paraffin-coated Cs vapor cell. The out-of-phase demodulated rotation shows a Lorentzian peak of linewidth 85 mu G, corresponding to a sensitivity of 0.15nG/root Hz. We discuss the potential of this technique for the measurement of an atomic electric-dipole moment. Copyright (C) EPLA, 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eight new bis-cationic dimeric lipids 2a-h have been synthesized; TEM of their aqueous dispersions confirmed the vesicle formation and from the thermal, spectroscopic, DLS and XRD studies it has been revealed that they form three different kinds of membranous aggregate depending on the m-value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eight new dimeric lipids, in which the two Me2N+ ion headgroups are separated by a variable number of polymethylene units [-(CH2)(m)-], have been synthesized. The electron micrograph (TEM) and dynamic light scattering (DLS) of their aqueous dispersions confirmed the formation of vesicular-type aggregates. The vesicle sizes and morphologies were found to depend strongly on the m value, the method, and thermal history of the vesicle preparation. Information on the thermotropic properties of the resulting vesicles was obtained from microcalorimetry and temperature-dependent fluorescence anisotropy measurements. Interestingly, the T-m values for these vesicles revealed a nonlinear dependence on spacer chain length (m value). These vesicles were able to entrap riboflavin. The rates of permeation of the OH- ion under an imposed transmembrane pH gradient were also found to depend significantly on the m value. X-Ray diffraction of the cast films of the lipid dispersions elucidated the nature and the thickness of these membrane organizations, and it was revealed that these lipids organize in three different ways depending on the m value. The EPR spin-probe method with the doxylstearic acids 5NS, 12NS, and 16NS, spin-labeled at various positions of stearic acid, was used to establish, the chain-flexibility gradient and homogeneity of these bilayer assemblies. The apparent fusogenic propensities of these bipolar tetraether lipids were investigated in the presence of Na2SO4 with fluorescence-resonance energy-transfer fusion assay. Small unilamellar vesicles formed from 1 and three representative biscationic lipids were also studied with fluorescence anisotropy and H-1 NMR spectroscopic techniques in the absence and the presence of varying amounts of cholesterol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel series of vesicle-forming ion-paired amphiphiles, bis(hexadecyldimethylammonium)alkane dipalmitate (1a-1h), containing four chains were synthesized with two isolated headgroups. In each of these amphiphiles, the two headgroup charges are separated by a flexible polymethylene spacer chain -[(CH2)(m)]- of varying lengths (m) such that the length and the conformation of the spacer chain determine the intra-"monomer" headgroup separation. Transmission electron microscopy indicated that each of these forms bilayer membranes upon dispersion in aqueous media. The vesicular properties of these aggregates have been examined by differential scanning calorimetry and temperature-dependent fluorescence anisotropy measurements. Interestingly, their T-m values decreased with the increase in the m value. Thus while the apparent T-m of the lipid with m = 2 (1a) is 74.1 degrees C, the corresponding value observed for the lipid with m = 12 (1h) is 38.9 degrees C. The fluorescence anisotropy values (r) for 1b-1g were quite high (r similar to 0.3) compared to that of 1h (r similar to 0.23) at 20-30 degrees C in their gel states. On the other hand, the r value for vesicular 1b beyond melting was higher (0.1) compared to any of those for 1c-1h (similar to 0.04-0.06). X-ray diffraction of the cast films was performed to understand the nature and the thickness of these membrane organizations. The membrane widths ranged from 30 to 51 A as the m values varied. The entrapment of a small water-soluble solute, riboflavin, by the individual vesicular aggregates, and their sustenance: under an imposed transmembrane pH gradient have also been examined. These results show that all lipid vesicles entrap riboflavin and that generally the resistance to OH- permeation decreases with the increase in m value. Finally,all the above observations were comparatively analyzed, and on the basis of the calculated structures of these lipids, it was possible to conclude that membrane propel-ties can be modulated by spacer chain length variation of the ion-paired amphiphiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glass nanocomposites in the system (100 - x)Li2B4O7-xSrBi(2)Ta(2)O(9) (0 less than or equal to x less than or equal to 22.5, in molar ratio) were fabricated via a melt quenching technique followed by controlled heat-treatment. The as-quenched samples were confirmed to be glassy and amorphous by differential thermal analysis (DTA) and X-ray powder diffraction (XRD) techniques, respectively. The phase formation and crystallite size of the heat-treated samples (glass nanocomposites) were monitored by XRD and transmission electron microscopy (TEM). The relative permittivities (epsilon(tau)') of the glass nanocomposites for different compositions were found to lie in between that of the parent host glass (Li2B4O7) and strontium bismuth tantalate (SBT) ceramic in the frequency range 100 Hz-40 MHz at 300 K, whereas the dielectric loss (D) of the glass nanocomposite was less than that of both the parent phases. Among the various dielectric models employed to predict the effective relative permittivity of the glass nanocomposite, the one obtained using the Maxwell's model was in good agreement with the experimentally observed value. Impedance analysis was employed to rationalize the electrical behavior of the glasses and glass nanocomposites. The pyroelectric response of the glasses and glass nanocomposites was monitored as a function of temperature and the pyroelectric coefficient for glass and glass nanocomposite (x = 20) at 300 K were 27 muC m(-2) K-1 and 53 muC m(-2) K-1, respectively. The ferroelectric behavior of these glass nanocomposites was established by P vs. E hysteresis loop studies. The remnant polarization (P-r) of the glass nanocomposite increases with increase in SBT content. The coercive field (E-c) and P-r for the glass nanocomposite (x = 20) were 727 V cm(-1) and 0.527 muC cm(-2), respectively. The optical transmission properties of these glass nanocomposites were found to be composition dependent. The refractive index (n = 1.722), optical polarizability (am = 1.266 6 10 23 cm 3) and third-order nonlinear optical susceptibility (x(3) = 3.046 6 10(-21) cm(3)) of the glass nanocomposite (x = 15) were larger than those of the as-quenched glass. Second harmonic generation (SHG) was observed in transparent glass nanocomposites and the d(eff) for the glass nanocomposite (x = 20) was found to be 0.373 pm V-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural Health Monitoring has gained wide acceptance in the recent past as a means to monitor a structure and provide an early warning of an unsafe condition using real-time data. Utilization of structurally integrated, distributed sensors to monitor the health of a structure through accurate interpretation of sensor signals and real-time data processing can greatly reduce the inspection burden. The rapid improvement of the Fiber Optic Sensor technology for strain, vibration, ultrasonic and acoustic emission measurements in recent times makes it feasible alternative to the traditional strain gauges, PVDF and conventional Piezoelectric sensors used for Non Destructive Evaluation (NDE) and Structural Health Monitoring (SHM). Optical fiber-based sensors offer advantages over conventional strain gauges, and PZT devices in terms of size, ease of embedment, immunity from electromagnetic interference (EMI) and potential for multiplexing a number of sensors. The objective of this paper is to demonstrate the acoustic wave sensing using Extrinsic Fabry-Perot Interferometric (EFPI) sensor on a GFRP composite laminates. For this purpose experiments have been carried out initially for strain measurement with Fiber Optic Sensors on GFRP laminates with intentionally introduced holes of different sizes as defects. The results obtained from these experiments are presented in this paper. Numerical modeling has been carried out to obtain the relationship between the defect size and strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the measurement of aerodynamic loads using fiber-optic strain gauge sensors and associated signal processors at hypersonic speeds in the 300mm hypersonic wind tunnel. at the Department of Aerospace Engineering, Indian Institute of Science. Fiber-optic sensors have been developed in USA since 1990, for variety of applications in experimental stress analysis, skin friction measurement in fluid flows, smart structures, smart materials, sensing of acoustic emission and more recently in the development of compact devices for measurement of displacement, stress/strain, pressure, temperature, acceleration etc. Our group at llSc has been playing a lead role in the use of these fiber - optic sensors for successful measurement of aerodynamic loads in wind tunnels and the first ever six-component wind tunnel strain gauge balance in the world based on fiber optic sensors was built at the Indian Institute of Science in the year 1999. We report here the results of our efforts in the development of an internal strain gauge balance for high-speed wind tunnel applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is pointed out that the change in refractive index with temperature of a crystal is different from what is calculated from the accompanying change in volume and the piezo-optic coefficients. The difference, which is a pure temperature effect, is explained as being due to the change in polarizability of the atoms produced by a change in the amplitude of vibration. The polarizability (α) can be expanded as a Taylor series in the changes of the distance (r) between the atoms and it is found that while the piezo-optic coefficient depends only on ∂α/∂r, the pure temperature effect is a function of ∂ 2 a/∂r 2. Making use of the experimental data, the values of a and its first two derivatives can be determined. These values are foundto be of the same order as those deduced from the intensities of Rayleigh and Raman scattering of light. The theory predicts that dn/dT should vary as the coefficient of cubical expansion at different temperatures and this is verified to be true. Finally, calculations are made of the thermo- and piezo-optic coefficients, considering the electrostatic interaction between the atoms. These do not adequately explain the observed facts, since no provision is made for the distortion of electron atmospheres around the atoms and the consequent changes in polarizability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new approach for Optical Beam steering using 1-D linear arrays of curved wave guides as delay line. The basic structure for generating delay is the curved/bent waveguide and hence its Analytical modelling involves evaluation of mode profiles, propagation constants and losses become important. This was done by solving the dispersion equation of a bent waveguide with specific refractive index profiles. The phase shifts due to S-bends are obtained and results are compared with theoretical values. Simulations in 2-D are done using BPM and Matlab.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have demonstrated novel concept of utilizing the photomechanical actuation in carbon nanotubes (CNTs) to tune and reversibly switch the Bragg wavelength. When fiber Bragg grating coated with CNTs (CNT-FBG) is exposed externally to a wide range of optical wavelengths, e. g., ultraviolet to infrared (0.2-200 mu m), a strain is induced in the CNTs which alters the grating pitch and refractive index in the CNT-FBG system resulting in a shift in the Bragg wavelength. This novel approach will find applications in telecommunication, sensors and actuators, and also for real time monitoring of the photomechanical actuation in nanoscale materials. (C) 2013 AIP Publishing LLC.