975 resultados para Open-sea deep convection


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuous Plankton Recorder data suggest that the Irminger Sea supports a major proportion of the surface-living population of the copepod Calanus finmarchicus in the northern North Atlantic, but there have been few studies of its population dynamics in the region. In this paper, we document the seasonal changes in the demographic structure of C finmarchicus in the Irminger Sea from a field programme during 2001/2002, and the associations between its developmental stages and various apparent bio-physical zones. Overwintering stages were found widely at depth (>500 m) across the Irminger Sea, and surviving females were widely distributed in the surface waters the following spring. However, recruitment of the subsequent generation was concentrated around the fringes of the Irminger Sea basin, along the edges of the Irminger and East Greenland Currents, and not in the central basin. In late summer animals were found descending back to overwintering depths in the Central Irminger Sea. The key factors dictating this pattern of recruitment appear to be (a) the general circulation regime, (b) predation on eggs in the spring, possibly by the surviving GO stock, and (c) mortality of first feeding naupliar stages in the central basin where food concentrations appear to be low throughout the year. We compared the demographic patterns in 2001/2002 with observations from the only previous major survey in 1963 and with data from the Continuous Plankton Recorder (CPR) surveys. In both previous data sets, the basic structure of GO ascent from the central basin and G1 recruitment around the fringes was a robust feature, suggesting that it is a recurrent phenomenon. The Irminger Sea is a complex mixing zone between polar and Atlantic water masses, and it has also been identified as a site of sporadic deep convection. The physical oceanographic characteristics of the region are therefore potentially sensitive to climate fluctuations. Despite this, the abundance of C finmarchicus in the region, as measured by the CPR surveys, appears not to have responded to climate factors linked to the North Atlantic Oscillation Index, in contrast with the stocks in eastern Atlantic areas. We speculate that this may because biological factors (production and mortality), rather than transport processes are the key factors affecting the population dynamics in the Irminger Sea. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the time scale of a century, the Atlantic thermohaline circulation (THC) is sensitive to the global surface salinity distribution. The advection of salinity toward the deep convection sites of the North Atlantic is one of the driving mechanisms for the THC. There is both a northward and a southward contributions. The northward salinity advection (Nsa) is related to the evaporation in the subtropics, and contributes to increased salinity in the convection sites. The southward salinity advection (Ssa) is related to the Arctic freshwater forcing and tends on the contrary to diminish salinity in the convection sites. The THC changes results from a delicate balance between these opposing mechanisms. In this study we evaluate these two effects using the IPSL-CM4 ocean-atmosphere-sea-ice coupled model (used for IPCC AR4). Perturbation experiments have been integrated for 100 years under modern insolation and trace gases. River runoff and evaporation minus precipitation are successively set to zero for the ocean during the coupling procedure. This allows the effect of processes Nsa and Ssa to be estimated with their specific time scales. It is shown that the convection sites in the North Atlantic exhibit various sensitivities to these processes. The Labrador Sea exhibits a dominant sensitivity to local forcing and Ssa with a typical time scale of 10 years, whereas the Irminger Sea is mostly sensitive to Nsa with a 15 year time scale. The GIN Seas respond to both effects with a time scale of 10 years for Ssa and 20 years for Nsa. It is concluded that, in the IPSL-CM4, the global freshwater forcing damps the THC on centennial time scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper will introduce the Baltex research programme and summarize associated numerical modelling work which has been undertaken during the last five years. The research has broadly managed to clarify the main mechanisms determining the water and energy cycle in the Baltic region, such as the strong dependence upon the large scale atmospheric circulation. It has further been shown that the Baltic Sea has a positive water balance, albeit with large interannual variations. The focus on the modelling studies has been the use of limited area models at ultra-high resolution driven by boundary conditions from global models or from reanalysis data sets. The programme has further initiated a comprehensive integration of atmospheric, land surface and hydrological modelling incorporating snow, sea ice and special lake models. Other aspects of the programme include process studies such as the role of deep convection, air sea interaction and the handling of land surface moisture. Studies have also been undertaken to investigate synoptic and sub-synoptic events over the Baltic region, thus exploring the role of transient weather systems for the hydrological cycle. A special aspect has been the strong interests and commitments of the meteorological and hydrological services because of the potentially large societal interests of operational applications of the research. As a result of this interests special attention has been put on data-assimilation aspects and the use of new types of data such as SSM/I, GPS-measurements and digital radar. A series of high resolution data sets are being produced. One of those, a 1/6 degree daily precipitation climatology for the years 1996–1999, is such a unique contribution. The specific research achievements to be presented in this volume of Meteorology and Atmospheric Physics is the result of a cooperative venture between 11 European research groups supported under the EU-Framework programmes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interactions between different convection modes can be investigated using an energy–cycle description under a framework of mass–flux parameterization. The present paper systematically investigates this system by taking a limit of two modes: shallow and deep convection. Shallow convection destabilizes itself as well as the other convective modes by moistening and cooling the environment, whereas deep convection stabilizes itself as well as the other modes by drying and warming the environment. As a result, shallow convection leads to a runaway growth process in its stand–alone mode, whereas deep convection simply damps out. Interaction between these two convective modes becomes a rich problem, even when it is limited to the case with no large–scale forcing, because of these opposing tendencies. Only if the two modes are coupled at a proper level can a self–sustaining system arise, exhibiting a periodic cycle. The present study establishes the conditions for self–sustaining periodic solutions. It carefully documents the behaviour of the two mode system in order to facilitate the interpretation of global model behaviours when this energy–cycle is implemented as a closure into a convection parameterization in future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of coupled atmosphere–ocean–ice aquaplanet experiments is described in which topological constraints on ocean circulation are introduced to study the role of ocean circulation on the mean climate of the coupled system. It is imagined that the earth is completely covered by an ocean of uniform depth except for the presence or absence of narrow barriers that extend from the bottom of the ocean to the sea surface. The following four configurations are described: Aqua (no land), Ridge (one barrier extends from pole to pole), Drake (one barrier extends from the North Pole to 35°S), and DDrake (two such barriers are set 90° apart and join at the North Pole, separating the ocean into a large basin and a small basin, connected to the south). On moving from Aqua to Ridge to Drake to DDrake, the energy transports in the equilibrium solutions become increasingly “realistic,” culminating in DDrake, which has an uncanny resemblance to the present climate. Remarkably, the zonal-average climates of Drake and DDrake are strikingly similar, exhibiting almost identical heat and freshwater transports, and meridional overturning circulations. However, Drake and DDrake differ dramatically in their regional climates. The small and large basins of DDrake exhibit distinctive Atlantic-like and Pacific-like characteristics, respectively: the small basin is warmer, saltier, and denser at the surface than the large basin, and is the main site of deep water formation with a deep overturning circulation and strong northward ocean heat transport. A sensitivity experiment with DDrake demonstrates that the salinity contrast between the two basins, and hence the localization of deep convection, results from a deficit of precipitation, rather than an excess of evaporation, over the small basin. It is argued that the width of the small basin relative to the zonal fetch of atmospheric precipitation is the key to understanding this salinity contrast. Finally, it is argued that many gross features of the present climate are consequences of two topological asymmetries that have profound effects on ocean circulation: a meridional asymmetry (circumpolar flow in the Southern Hemisphere; blocked flow in the Northern Hemisphere) and a zonal asymmetry (a small basin and a large basin).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present ocean model sensitivity experiments aimed at separating the influence of the projected changes in the “thermal” (near-surface air temperature) and “wind” (near-surface winds) forcing on the patterns of sea level and ocean heat content. In the North Atlantic, the distribution of sea level change is more due to the “thermal” forcing, whereas it is more due to the “wind” forcing in the North Pacific; in the Southern Ocean, the “thermal” and “wind” forcing have a comparable influence. In the ocean adjacent to Antarctica the “thermal” forcing leads to an inflow of warmer waters on the continental shelves, which is somewhat attenuated by the “wind” forcing. The structure of the vertically integrated heat uptake is set by different processes at low and high latitudes: at low latitudes it is dominated by the heat transport convergence, whereas at high latitudes it represents a small residual of changes in the surface flux and advection of heat. The structure of the horizontally integrated heat content tendency is set by the increase of downward heat flux by the mean circulation and comparable decrease of upward heat flux by the subgrid-scale processes; the upward eddy heat flux decreases and increases by almost the same magnitude in response to, respectively, the “thermal” and “wind” forcing. Regionally, the surface heat loss and deep convection weaken in the Labrador Sea, but intensify in the Greenland Sea in the region of sea ice retreat. The enhanced heat flux anomaly in the subpolar Atlantic is mainly caused by the “thermal” forcing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advance of the onset of the Indian monsoon is here explained in terms of a balance between the low-level monsoon flow and an over-running intrusion of mid-tropospheric dry air. The monsoon advances, over a period of about 6 weeks, from the south of the country to the northwest. Given that the low-level monsoon winds are westerly or southwesterly, and the midlevel winds northwesterly, the monsoon onset propagates upwind relative to midlevel flow, and perpendicular to the low-level flow, and is not directly caused by moisture flux toward the northwest. Lacking a conceptual model for the advance means that it has been hard to understand and correct known biases in weather and climate prediction models. The mid-level northwesterlies form a wedge of dry air that is deep in the far northwest of India and over-runs the monsoon flow. The dry layer is moistened from below by shallow cumulus and congestus clouds, so that the profile becomes much closer to moist adiabatic, and the dry layer is much shallower in the vertical, toward the southeast of India. The profiles associated with this dry air show how the most favourable environment for deep convection occurs in the south, and onset occurs here first. As the onset advances across India, the advection of moisture from the Arabian Sea becomes stronger, and the mid-level dry air is increasingly moistened from below. This increased moistening makes the wedge of dry air shallower throughout its horizontal extent, and forces the northern limit of moist convection to move toward the northwest. Wetting of the land surface by rainfall will further reinforce the north-westward progression, by sustaining the supply of boundary layer moisture and shallow cumulus. The local advance of the monsoon onset is coincident with weakening of the mid-level northwesterlies, and therefore weakened mid-level dry advection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The IMAGES core MD99-2343, recovered from a sediment drift north of the island of Minorca, in the north-western Mediterranean Sea, holds a high-resolution sequence that is perfectly suited to study the oscillations of the overturning system of the Western Mediterranean Deep Water (WMDW). Detailed analysis of grain-size and bulk geochemical composition reveals the sensitivity of this region to climate changes at both orbital and centennial-millennial temporal scales during the last 50 kyr. The dominant orbital pattern in the K/Al record indicates that sediment supply to the basin was controlled by the insolation evolution at 40°N, which forced changes in the fluvial regime, with more efficient sediment transport during insolation maxima. This orbital control also modulated the long-term pattern of the WMDW intensity as illustrated by the silt/clay ratio. However, deep convection was particularly sensitive to climatic changes at shorter time-scales, i.e. to centennial-millennial glacial and Holocene oscillations that are well documented by all the paleocurrent intensity proxies (Si/Al, Ti/Al and silt/clay ratios). Benthic isotopic records (d13C and d18O) show a Dansgaard-Oeschger (D-O) pattern of variability of WMDW properties, which can be associated with changing intensities of the deep currents system. The most prominent reduction on the WMDW overturning was caused by the post-glacial sea level rise. Three main scenarios of WMDW overturning are revealed: a strong mode during D-O Stadials, a weak mode during D-O Interstadials and an intermediate mode during cooling transitions. In addition, D-O Stadials associated with Heinrich events (HEs) have a very distinct signature as the strong mode of circulation, typical for the other D-O Stadials, was never reached during HE due to the surface freshening induced by the inflowing polar waters. Consequently, the WMDW overturning system oscillated around the intermediate mode of circulation during HE. Though surface conditions were more stable during the Holocene, the WMDW overturning cell still reacted synchronously to short-lived events, as shown by increments in the planktonic d18O record, triggering quick reinforcements of the deep water circulation. Overall, these results highlight the sensitivity of the WMDW to rapid climate change which in the recent past were likely induced by oceanographic and atmospheric reorganizations in the North Atlantic region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concentrations of total organic carbon (TOC) were determined on samples collected during six cruises in the northern Arabian Sea during the 1995 US JGOFS Arabian Sea Process Study. Total organic carbon concentrations and integrated stocks in the upper ocean varied both spatially and seasonally. Highest mixed-layer TOC concentrations (80-100 µM C) were observed near the coast when upwelling was not active, while upwelling tended to reduce local concentrations. In the open ocean, highest mixed-layer TOC concentrations (80-95 µM C) developed in winter (period of the NE Monsoon) and remained through mid summer (early to mid-SW Monsoon). Lowest open ocean mixed-layer concentrations (65-75 µM C) occurred late in the summer (late SW Monsoon) and during the Fall Intermonsoon period. The changes in TOC concentrations resulted in seasonal variations in mean TOC stocks (upper 150 m) of 1.5-2 mole C/m**2, with the lowest stocks found late in the summer during the SW Monsoon-Fall Intermonsoon transition. The seasonal accumulation of TOC north of 15°N was 31-41 x 10**12 g C, mostly taking place over the period of the NE Monsoon, and equivalent to 6-8% of annual primary production estimated for that region in the mid-1970s. A net TOC production rate of 12 mmole C/m**2/d over the period of the NE Monsoon represented ~80% of net community production. Net TOC production was nil during the SW Monsoon, so vertical export would have dominated the export terms over that period. Total organic carbon concentrations varied in vertical profiles with the vertical layering of the water masses, with the Persian Gulf Water TOC concentrations showing a clear signal. Deep water (>2000 m) TOC concentrations were uniform across the basin and over the period of the cruises, averaging 42.3±1.4 µM C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eight different sites from 2300 to 4420 m water depth in the Arabian Sea were sampled for a biochemical quantification of phospholipid concentrations in the sediments. This method serves as a measure of microbial biomass in marine sediments comprising all small-sized organisms, including bacteria, fungi, protozoa and metazoa. Phospholipid concentrations can be converted to carbon units as an estimate of total microbial biomass in the sediments. The average phospholipid concentrations in the surface sediments (0-1 cm) of the 4 abyssal sites ranged from 7 nmol cm?3 at the southern site (SAST, 10°N 65°E, 4425 m) to 29 nmol/cm**3 at the western site (WAST, 16°N 60°E, 4045 m). The high values detected at the abyssal station WAST exceeded those in the literature for other abyssal sites and were comparable to values from the upper continental slope of the NE-Atlantic and the Arctic. At the four continental slope sites in the Arabian Sea, average phospholipid concentrations ranged from 9 to 53 nmol/cm**3 with the maximum values at stations A (2314 m) and D (3142 m) close to the Omani coast. Records of particulate organic carbon flux to the deep sea are available for four of the investigated locations, allowing a test of the hypothesis that the standing stock of benthic microorganisms in the deep sea is controlled by substrate availability, i.e. particle sedimentation. Total microbial biomass in the surface sediments of the Arabian Sea was positively correlated with sedimentation rates, consistent with previous studies of other oceans. The use of the measurement of phospholipid concentrations as a proxy for input of particulate organic matter is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water column stratification increased at climatic transitions from cold to warm periods during the late Quaternary and led to anoxic conditions and sapropel formation in the deep eastern Mediterranean basins. High-resolution data sets on sea-surface temperatures (SST) (estimated from UK'37 indices) and d18O of planktonic foraminifer calcite (d18Ofc) across late Pleistocene sapropel intervals show that d18Ofc decreased (between 1 and 4.6 per mil) and SST increased (between 0.7° and 6.7°C). Maximal d18Oseawater depletion of eastern Mediterranean surface waters at the transition is between 0.5 and 3.0 per mil, and in all but one case exceeded the depletion seen in a western Mediterranean core. The depletion in d18Oseawater is most pronounced at sapropel bases, in agreement with an initial sudden input of monsoon-derived freshwater. Most sapropels coincide with warming trends of SST. The density decrease by initial freshwater input and continued warming of the sea surface pooled fresh water in the surface layer and prohibited deep convection down to ageing deep water emplaced during cold and arid glacial conditions. An exception to this pattern is "glacial" sapropel S6; its largest d18Oseawater depletion (3 per mil) is almost matched by the depletion in the western Mediterranean Sea, and it is accompanied by surface water cooling following an initially rapid warming phase. A second period of significant isotopic depletion is in isotope stage 6 at the 150 kyr insolation maximum. While not expressed as a sapropel due to cold SST, it is in accord with a strengthened monsoon in the southern catchment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This set provides 1779 CTD profiles of temperature and salinity measured with a russian "Zond-Bathometer" by the research vessels Yakov Gakkel and Vladimir Parshin, of the former Soviet Union, during 1987-1990. It is dedicated to the memory of Professor Ivan Ovchinnikov (1931-07-14 to 2000-06-10) who initiated the soviet program of research of the Mediterranean Sea and contributed significantly to the investigation of physical processes in the Mediterranean Sea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four sediment cores from the central and northern Greenland Sea basin, a crucial area for the renewal of North Atlantic deep water, were analyzed for planktic foraminiferal fauna, planktic and benthic stable oxygen and carbon iso- topes as well as ice-rafted debris to reconstruct the environ- mental variability in the last 23 kyr. During the Last Glacial Maximum, the Greenland Sea was dominated by cold and sea-ice bearing surface water masses. Meltwater discharges from the surrounding ice sheets affected the area during the deglaciation, influencing the water mass circulation. During the Younger Dryas interval the last major freshwater event occurred in the region. The onset of the Holocene interglacial was marked by an increase in the advection of Atlantic Wa- ter and a rise in sea surface temperatures (SST). Although the thermal maximum was not reached simultaneously across the basin, benthic isotope data indicate that the rate of overturn- ing circulation reached a maximum in the central Greenland Sea around 7ka. After 6-5ka a SST cooling and increas- ing sea-ice cover is noted. Conditions during this so-called "Neoglacial" cooling, however, changed after 3 ka, probably due to enhanced sea-ice expansion, which limited the deep convection. As a result, a well stratified upper water column amplified the warming of the subsurface waters in the central Greenland Sea, which were fed by increased inflow of At- lantic Water from the eastern Nordic Seas. Our data reveal that the Holocene oceanographic conditions in the Green- land Sea did not develop uniformly. These variations were a response to a complex interplay between the Atlantic and Polar water masses, the rate of sea-ice formation and melting and its effect on vertical convection intensity during times of Northern Hemisphere insolation changes.