920 resultados para Oligosaccharide Epitopes
Resumo:
Frequent expression of cancer testis antigens (CTA) has been consistently observed in head and neck squamous cell carcinomas (HNSCC). For instance, in 52 HNSCC patients, MAGE-A3 and -A4 CTA were expressed in over 75% of tumors, regardless of the sites of primary tumors such as oral cavity or hypopharynx. Yet, T-cell responses against these CTA in tumor-bearing patients have not been investigated in detail. In this study, we assessed the naturally acquired T-cell response against MAGE-A3 and -A4 in nonvaccinated HNSCC patients. Autologous antigen-presenting cells pulsed with overlapping peptide pools were used to detect and isolate MAGE-A3 and MAGE-A4 specific CD4(+) T cells from healthy donors and seven head and neck cancer patients. CD4(+) T-cell clones were characterized by cytokine secretion. We could detect and isolate MAGE-A3 and MAGE-A4 specific CD4(+) T cells from 7/7 cancer patients analyzed. Moreover, we identified six previously described and three new epitopes for MAGE-A3. Among them, the MAGE-A3(111-125) and MAGE-A3(161-175) epitopes were shown to be naturally processed and presented by DC in association with HLA-DP and DR, respectively. All of the detected MAGE-A4 responses were specific for new helper epitopes. These data suggest that naturally acquired CD4(+) T-cell responses against CT antigens often occur in vivo in HNSCC cancer patients and provide a rationale for the development of active immunotherapeutic approaches in this type of tumor.
Resumo:
Like other helminths, Trichinella spiralis has evolved strategies to allow it to survive in the host organism, including the expression of epitopes similar to those present in either expressed or hidden host antigens. To identify T. spiralis-derived antigens that are evolutionarily conserved in the parasite and its host and that could be responsible for its evasion of the host immune response, we examined the reactivity of six different types of autoantibodies to T. spiralis larvae from muscle. T. spiralis antigens that share epitopes with human autoantigens were identified by assessing the cross-reactivity of autoantibody-containing serum samples with T. spiralis antigens in the absence of specific anti-parasite antibodies. Of the 55 autoantibody-containing human serum samples that we analysed by immunohistological screening, 24 (43.6%) recognised T. spiralis muscle larvae structures such as the subcuticular region, the genital primordium or the midgut. Using Western blots, we demonstrated that the same sera reacted with 24 protein components of T. spiralis muscle larvae excretory-secretory L1 antigens. We found that the human autoantibodies predominantly bound antigens belonging to the TSL1 group; more specifically, the autoantibody-containing sera reacted most frequently with the 53-kDa component. Thus, this protein is a good candidate for further studies of the mechanisms of T. spiralis-mediated immunomodulation.
Resumo:
As more tumor antigens are discovered and as computer-guided T cell epitope prediction programs become more sophisticated, many potential T cell epitopes are synthesized and demonstrated to be antigenic in vitro. However, it is estimated that about 50% of such tumor antigen-specific T cells have not been demonstrated to recognize the naturally presented epitopes due to either technical difficulties, such as T cell cloning which is still challenging for many laboratories; or the predicted T cell epitopes are not generated or not generated in sufficient amounts by the antigen processing machinery. However, to potentially identify clinically relevant vaccine candidate epitopes, it is essential to demonstrate natural antigen presentation. Here we combine the advantages of MHC tetramer and intracellular cytokine staining to sensitively detect natural antigen presentation by tumor cells for epitopes of interest. The novel method does not require T cell cloning or long-term T cell culture. Because the antigen-specific T cells are positively identified, this method is much less influenced by IFNgamma producing cells with unknown specificities and should be widely applicable.
Resumo:
Localization of human MHC class I-restricted T cell epitopes in the circumsporozoite (CS) protein of the human parasite Plasmodium falciparum is an important objective in the development of antimalarial vaccines. To this purpose, we synthesized a series of overlapping synthetic 20-mer peptides, spanning the entire sequence of the 7G8 CS molecule except for the central repeat B cell domain. The P.f.CS peptides were first tested for their ability to bind to the human MHC class I HLA-A2.1 molecule on T2, a human cell line. Subsequently, the use of a series of shorter peptide analogues allowed us to determine the optimal A2.1 binding sequence present in several of the 20-mers. Binding P.f.CS peptides were further tested for their capacity to activate PBL from HLA-A2.1+ immune donors living in a malaria-endemic area. Specific IFN-gamma production was detected in the supernatant of cultures of PBL from exposed individuals. Cytotoxic T cell lines and clones were derived from the PBL of one responder, and their activity was shown to be HLA-A2.1-restricted and specific for the peptide 334-342 of the CS protein. In addition, double transgenic HLA-A2.1 x human beta 2-microglobulin mice were immunized with peptide 1-10 of the CS protein. T cells derived from immune lymph nodes displayed a peptide-specific HLA-A2.1-restricted cytolytic activity after one in vitro stimulation.
Resumo:
Peptide Ags presented by class I MHC molecules on human melanomas and that are recognized by CD8(+) T cells are the subjects of many studies of antitumor immunity and represent attractive candidates for therapeutic approaches. However, no direct quantitative measurements exist to reveal their expression hierarchy on the cell surface. Using novel recombinant Abs which bind these Ags with a peptide-specific, MHC-restricted manner, we demonstrate a defined pattern of expression hierarchy of peptide-HLA-A2 complexes derived from three major differentiation Ags: gp100, Melan-A/Mart-1, and tyrosinase. Studying melanoma cell lines derived from multiple patients, we reveal a surprisingly high level of presentation of tyrosinase-derived complexes and moderate to very low expression of complexes derived from other Ags. No correlation between Ag presentation and mRNA expression was found; however, protein stability may play a major role. These results provide new insights into the characteristics of Ag presentation and are particularly important when such targets are being considered for immunotherapy. These results may shed new light on relationships between Ag presentation and immune response to cancer Ags.
Resumo:
Purified monoclonal antibodies (Mab) produced by 3 hybridomas and reacting with 3 different epitopes of carcinoembryonic antigen (CEA) were used in a solid phase enzyme immunoassay. Two Mabs were physically adsorbed to polystyrene balls and the third Mab was coupled to alkaline phosphatase using the bifunctional reagent N-succinimidyl-3-(2-pyridyldithio)-propionate. During a first incubation, CEA from heat-extracted serum samples was immunoadsorbed to the antibody coated balls. After washing of the balls, bound CEA was detected by a second incubation with the enzyme coupled Mab. The sensitivity of the assay was 0.6 ng per ml of serum. A total of 196 serum samples from patients with various types of carcinoma, with liver cirrhosis, or from healthy blood donors with or without smoking habits, were tested. The results obtained with the monoclonal enzyme immunoassay (M-EIA) were compared with those obtained with perchloric acid extracts of the same serum samples tested by an inhibition radioimmunoassay using conventional goat anti-CEA antiserum. There was an excellent correlation between the two assays. In particular, the new M-EIA gave good results for the detection of tumor recurrences in the follow-up of colon carcinoma patients. However, despite the use of exclusively monoclonal antibodies the new assay detected a similar percentage of slightly elevated CEA values as the conventional assay in patients with non-malignant disease, suggesting that the CEA associated with non-malignant diseases is immunologically identical to the CEA released by colon carcinoma.
Resumo:
Over the past decade, many efforts have been made to identify MHC class II-restricted epitopes from different tumor-associated Ags. Melan-A/MART-1(26-35) parental or Melan-A/MART-1(26-35(A27L)) analog epitopes have been widely used in melanoma immunotherapy to induce and boost CTL responses, but only one Th epitope is currently known (Melan-A51-73, DRB1*0401 restricted). In this study, we describe two novel Melan-A/MART-1-derived sequences recognized by CD4 T cells from melanoma patients. These epitopes can be mimicked by peptides Melan-A27-40 presented by HLA-DRB1*0101 and HLA-DRB1*0102 and Melan-A25-36 presented by HLA-DQB1*0602 and HLA-DRB1*0301. CD4 T cell clones specific for these epitopes recognize Melan-A/MART-1+ tumor cells and Melan-A/MART-1-transduced EBV-B cells and recognition is reduced by inhibitors of the MHC class II presentation pathway. This suggests that the epitopes are naturally processed and presented by EBV-B cells and melanoma cells. Moreover, Melan-A-specific Abs could be detected in the serum of patients with measurable CD4 T cell responses specific for Melan-A/MART-1. Interestingly, even the short Melan-A/MART-1(26-35(A27L)) peptide was recognized by CD4 T cells from HLA-DQ6+ and HLA-DR3+ melanoma patients. Using Melan-A/MART-1(25-36)/DQ6 tetramers, we could detect Ag-specific CD4 T cells directly ex vivo in circulating lymphocytes of a melanoma patient. Together, these results provide the basis for monitoring of naturally occurring and vaccine-induced Melan-A/MART-1-specific CD4 T cell responses, allowing precise and ex vivo characterization of responding T cells.
Resumo:
In an attempt to improve tumor targeting and tumor retention time of monoclonal antibodies (MAbs), we prepared biparatopic antibodies (BpAbs) having the capability of binding 2 different non-overlapping epitopes on the same target antigen molecule, namely, the carcinoembryonic antigen (CEA). Six BpAbs were constructed by coupling 2 different Fab' fragments from 4 different specific anti-CEA MAbs recognizing 4 CEA epitopes (Gold 1-4). Demonstration of the double paratopic binding of these antibodies for CEA was confirmed in vitro by inhibition radioimmunoassay and cross-inhibition analysis by surface plasmon resonance (SPR; BIACORE) technology. Using the latter technique, the affinity constants for CEA immobilized onto the sensor chip were found to range from 0.37 to 1.54 x 10(9) M(-1) for the 4 parental F(ab')2 fragments and from 1.88 to 10.14 x 10(9) M(-1) for the BpAbs, demonstrating the advantage of biparatopic binding over conventional F(ab')2 binding. The Ka improvement was particularly high for BpAb F6/35A7 and BpAb F6/B17 with a 9.5- and 8.1-fold increase, respectively, as compared with the parental F(ab')2. In vivo, the 6 BpAbs were compared with their 2 respective parental F(ab')2 by injection of 131I-BpAb/125I-F(ab')2 parental fragments into nude mice xenografted with the human colon carcinoma T380. Dissection 72 hr post-injection demonstrated that BpAb B17/CE25 and BpAb F6/B17 gave higher tumor uptake than that of their parental F(ab')2. This finding is particularly interesting for BpAb F6/B17, which compared favorably with the F6 F(ab')2, one of the best parental F(ab')2 fragments used in our study.
Resumo:
To find Epstein-Barr virus (EBV) strains with genetic variations of EBV latent membrane protein 1 (EBV-LMP1) from nasopharyngeal carcinoma (NPC), the full-length DNA of LMP1 genes from 21 NPC biopsies obtained in Hunan province in southern China was amplified and sequenced. Our sequences were compared to those previously reported by the Clustal V method. Results showed that all 21 sequences displayed two amino acid changes most frequently in LMP1 of CD4+ T cell epitopes at codons 144 (F®I, 21/21) and 212 (G®S, 19/21) or (G®N, 2/21). We also show that type A EBV strain is prevalent in the cases of NPC from Hunan province with a 30-bp 18/21 deletion, and we highlight that this deletion resulted in loss of one of the CD4+ T cell-restricted epitopes. The other 3 sequences without this deletion all had a change at codon 344 (G®D). Furthermore, in the major epitope sequence of CD8+ T cells restricted by HLA-A2, all 21 sequences showed changes at codons 126 (L®F) and 129 (M®I). Our study discovered that one of the 21 sequence variations harbored a new change at codon 131 (W®C), and 5/21 specimens showed another novel change at codon 115 (G®A) in the major epitope sequence of CD8+ T cells restricted by HLA-A2. Our study suggests that these sequence variations of NPC-derived LMP1 may lead to a potential escape from host cell immune recognition, protecting latent EBV infection and causing an increase in tumorigenicity.
Resumo:
Tesis (Doctor en Ciencias con Especialidad en Microbiología) UANL, 2013.
Resumo:
The ability of Plasmodium falciparum parasitized RBC (pRBC) to form rosettes with normal RBC is linked to the virulence of the parasite and RBC polymorphisms that weaken rosetting confer protection against severe malaria. The adhesin PfEMP1 mediates the binding and specific antibodies prevent sequestration in the micro-vasculature, as seen in animal models. Here we demonstrate that epitopes targeted by rosette disrupting antibodies converge in the loop of subdomain 3 (SD3) which connects the h6 and h7 α-helices of PfEMP1-DBL1α. Both monoclonal antibodies and polyclonal IgG, that bound to epitopes in the SD3-loop, stained the surface of pRBC, disrupted rosettes and blocked direct binding of recombinant NTS-DBL1α to RBC. Depletion of polyclonal IgG raised to NTS-DBL1α on a SD3 loop-peptide removed the anti-rosetting activity. Immunizations with recombinant subdomain 1 (SD1), subdomain 2 (SD2) or SD3 all generated antibodies reacting with the pRBC-surface but only the sera of animals immunized with SD3 disrupted rosettes. SD3-sequences were found to segregate phylogenetically into two groups (A/B). Group A included rosetting sequences that were associated with two cysteine-residues present in the SD2-domain while group B included those with three or more cysteines. Our results suggest that the SD3 loop of PfEMP1-DBL1α is an important target of anti-rosetting activity, clarifying the molecular basis of the development of variant-specific rosette disrupting antibodies.
Resumo:
The aim of the study was to investigate the ability of pectic oligosaccharides (POS) to inhibit adhesion of three strains of verotoxigenic Escherichia coli, three strains of enteropathogenic E. coli, and one nonclinical strain of Desulfovibrio desulfuricans to human intestinal epithelial cell cultures. Lactobacillus acidophilus and Lactobacillus gasseri were included for comparison. Attachment wits determined in the human HT29 cell line by viable Count of adherent bacteria. POS in buffer at pH 7.2 were antiadhesive at a dose of 2.5 mg ml(-1), reducing adhesion of enteropathogenic E. coli and verotoxigenic E. coli strains to less than 30% of control values. Concentrations resulting in 50% inhibition ranged from 0.15 to 0.46 mg ml(-1). L. acidophilus was not significantly affected. but adhesion of L. gasseri was reduced to 29% of the control value. POS reduced the adhesion of D. desulfuricans to 0.33% of the control value. POS also had a protective effect against E. coli verocytotoxins VT1 and VT2 at concentrations of 0.01 and 1 mu g ml(-1), respectively.
Resumo:
In vitro fermentations were carried out by using a model of the human colon to simulate microbial activities of lower gut bacteria. Bacterial populations (and their metabolic products) were evaluated under the effects of various fermentable substrates. Carbohydrates tested were polydextrose, lactitol, and fructo-oligosaccharide (FOS). Bacterial groups of interest were evaluated by fluorescence in situ hybridization as well as by species-specific PCR to determine bifidobacterial species and percent-G+C profiling of the bacterial communities present. Short-chain fatty acids (SCFA) produced during the fermentations were also evaluated. Polydextrose had a stimulatory effect upon colonic bifidobacteria at concentrations of 1 and 2% (using a single and pooled human fecal inoculum, respectively). The bifidogenic effect was sustained throughout all three vessels of the in vitro system (P = 0.01 seen in vessel 3), as corroborated by the bacterial community profile revealed by %G+C analysis. This substrate supported a wide variety of bifidobacteria and was the only substrate where Bifidobacterium infantis was detected. The fermentation of lactitol had a deleterious effect on both bifidobacterial and bacteroides populations (P = 0.01) and decreased total cell numbers. SCFA production was stimulated, however, particularly butyrate (beneficial for host colonocytes). FOS also had a stimulatory effect upon bifidobacterial and lactobacilli populations that used a single inoculum (P = 0.01 for all vessels) as well as a bifidogenic effect in vessels 2 and 3 (P = 0.01) when a pooled inoculum was used. A decrease in bifidobacteria throughout the model was reflected in the percent-G+C profiles.