972 resultados para Oligonucleotide Array Sequence Analysis
Resumo:
RATIONALE: Lymphatic vasculature plays important roles in tissue fluid homeostasis maintenance and in the pathology of human diseases. Yet, the molecular mechanisms that control lymphatic vessel maturation remain largely unknown. OBJECTIVE: We analyzed the gene expression profiles of ex vivo isolated lymphatic endothelial cells to identify novel lymphatic vessel expressed genes and we investigated the role of semaphorin 3A (Sema3A) and neuropilin-1 (Nrp-1) in lymphatic vessel maturation and function. METHODS AND RESULTS: Lymphatic and blood vascular endothelial cells from mouse intestine were isolated using fluorescence-activated cell sorting, and transcriptional profiling was performed. We found that the axonal guidance molecules Sema3A and Sema3D were highly expressed by lymphatic vessels. Importantly, we found that the semaphorin receptor Nrp-1 is expressed on the perivascular cells of the collecting lymphatic vessels. Treatment of mice in utero (E12.5-E16.5) with an antibody that blocks Sema3A binding to Nrp-1 but not with an antibody that blocks VEGF-A binding to Nrp-1 resulted in a complex phenotype of impaired lymphatic vessel function, enhanced perivascular cell coverage, and abnormal lymphatic vessel and valve morphology. CONCLUSIONS: Together, these results reveal an unanticipated role of Sema3A-Nrp-1 signaling in the maturation of the lymphatic vascular network likely via regulating the perivascular cell coverage of the vessels thus affecting lymphatic vessel function and lymphatic valve development.
Resumo:
MsrR, a factor contributing to methicillin resistance in Staphylococcus aureus, belongs to the LytR-CpsA-Psr family of cell envelope-associated proteins. Deletion of msrR increased cell size and aggregation, and altered envelope properties, leading to a temporary reduction in cell surface hydrophobicity, diminished colony-spreading ability, and an increased susceptibility to Congo red. The reduced phosphorus content of purified cell walls of the msrR mutant suggested a reduction in wall teichoic acids, which may explain some of the observed phenotypes. Microarray analysis of the msrR deletion mutant revealed only minor changes in the global transcriptome, suggesting that MsrR has structural rather than regulatory functions. Importantly, virulence of the msrR mutant was decreased in a nematode-killing assay as well as in rat experimental endocarditis. MsrR is therefore likely to play a role in cell envelope maintenance, cell separation, and pathogenicity of S. aureus.
Resumo:
Anophthalmia and microphthalmia are important birth defects, but their pathogenesis remains incompletely understood. We studied a patient with severe unilateral microphthalmia who had a 2.7 Mb deletion at chromosome 18q22.1 that was inherited from his mother. In-situ hybridization showed that one of the deleted genes, TMX3, was expressed in the retinal neuroepithelium and lens epithelium in the developing murine eye. We re-sequenced TMX3 in 162 patients with anophthalmia or microphthalmia, and found two missense substitutions in unrelated patients: c.116G>A, predicting p.Arg39Gln, in a male with unilateral microphthalmia and retinal coloboma, and c.322G>A, predicting p.Asp108Asn, in a female with unilateral microphthalmia and severe micrognathia. We used two antisense morpholinos targeted against the zebrafish TMX3 orthologue, zgc:110025, to examine the effects of reduced gene expression in eye development. We noted that the morphant larvae resulting from both morpholinos had significantly smaller eye sizes and reduced labeling with islet-1 antibody directed against retinal ganglion cells at 2 days post fertilization. Co-injection of human wild type TMX3 mRNA rescued the small eye phenotype obtained with both morpholinos, whereas co-injection of human TMX3(p.Arg39Gln) mutant mRNA, analogous to the mutation in the patient with microphthalmia and coloboma, did not rescue the small eye phenotype. Our results show that haploinsufficiency for TMX3 results in a small eye phenotype and represents a novel genetic cause of microphthalmia and coloboma. Future experiments to determine if other thioredoxins are important in eye morphogenesis and to clarify the mechanism of function of TMX3 in eye development are warranted.
Resumo:
Preoperative chemoradiation significantly improves oncological outcome in locally advanced rectal cancer. However there is no effective method of predicting tumor response to chemoradiation in these patients. Peripheral blood mononuclear cells have emerged recently as pathology markers of cancer and other diseases, making possible their use as therapy predictors. Furthermore, the importance of the immune response in radiosensivity of solid organs led us to hypothesized that microarray gene expression profiling of peripheral blood mononuclear cells could identify patients with response to chemoradiation in rectal cancer. Thirty five 35 patients with locally advanced rectal cancer were recruited initially to perform the study. Peripheral blood samples were obtained before neaodjuvant treatment. RNA was extracted and purified to obtain cDNA and cRNA for hybridization of microarrays included in Human WG CodeLink bioarrays. Quantitative real time PCR was used to validate microarray experiment data. Results were correlated with pathological response, according to Mandard´s criteria and final UICC Stage (patients with tumor regression grade 1-2 and downstaging being defined as responders and patients with grade 3-5 and no downstaging as non-responders). Twenty seven out of 35 patients were finally included in the study. We performed a multiple t-test using Significance Analysis of Microarrays, to find those genes differing significantly in expression, between responders (n = 11) and non-responders (n = 16) to CRT. The differently expressed genes were: BC 035656.1, CIR, PRDM2, CAPG, FALZ, HLA-DPB2, NUPL2, and ZFP36. The measurement of FALZ (p = 0.029) gene expression level determined by qRT-PCR, showed statistically significant differences between the two groups. Gene expression profiling reveals novel genes in peripheral blood samples of mononuclear cells that could predict responders and non-responders to chemoradiation in patients with locally advanced rectal cancer. Moreover, our investigation added further evidence to the importance of mononuclear cells' mediated response in the neoadjuvant treatment of rectal cancer.
Resumo:
There is great interindividual variability in HIV-1 viral setpoint after seroconversion, some of which is known to be due to genetic differences among infected individuals. Here, our focus is on determining, genome-wide, the contribution of variable gene expression to viral control, and to relate it to genomic DNA polymorphism. RNA was extracted from purified CD4+ T-cells from 137 HIV-1 seroconverters, 16 elite controllers, and 3 healthy blood donors. Expression levels of more than 48,000 mRNA transcripts were assessed by the Human-6 v3 Expression BeadChips (Illumina). Genome-wide SNP data was generated from genomic DNA using the HumanHap550 Genotyping BeadChip (Illumina). We observed two distinct profiles with 260 genes differentially expressed depending on HIV-1 viral load. There was significant upregulation of expression of interferon stimulated genes with increasing viral load, including genes of the intrinsic antiretroviral defense. Upon successful antiretroviral treatment, the transcriptome profile of previously viremic individuals reverted to a pattern comparable to that of elite controllers and of uninfected individuals. Genome-wide evaluation of cis-acting SNPs identified genetic variants modulating expression of 190 genes. Those were compared to the genes whose expression was found associated with viral load: expression of one interferon stimulated gene, OAS1, was found to be regulated by a SNP (rs3177979, p = 4.9E-12); however, we could not detect an independent association of the SNP with viral setpoint. Thus, this study represents an attempt to integrate genome-wide SNP signals with genome-wide expression profiles in the search for biological correlates of HIV-1 control. It underscores the paradox of the association between increasing levels of viral load and greater expression of antiviral defense pathways. It also shows that elite controllers do not have a fully distinctive mRNA expression pattern in CD4+ T cells. Overall, changes in global RNA expression reflect responses to viral replication rather than a mechanism that might explain viral control.
Resumo:
BACKGROUND: Histologic grade in breast cancer provides clinically important prognostic information. However, 30%-60% of tumors are classified as histologic grade 2. This grade is associated with an intermediate risk of recurrence and is thus not informative for clinical decision making. We examined whether histologic grade was associated with gene expression profiles of breast cancers and whether such profiles could be used to improve histologic grading. METHODS: We analyzed microarray data from 189 invasive breast carcinomas and from three published gene expression datasets from breast carcinomas. We identified differentially expressed genes in a training set of 64 estrogen receptor (ER)-positive tumor samples by comparing expression profiles between histologic grade 3 tumors and histologic grade 1 tumors and used the expression of these genes to define the gene expression grade index. Data from 597 independent tumors were used to evaluate the association between relapse-free survival and the gene expression grade index in a Kaplan-Meier analysis. All statistical tests were two-sided. RESULTS: We identified 97 genes in our training set that were associated with histologic grade; most of these genes were involved in cell cycle regulation and proliferation. In validation datasets, the gene expression grade index was strongly associated with histologic grade 1 and 3 status; however, among histologic grade 2 tumors, the index spanned the values for histologic grade 1-3 tumors. Among patients with histologic grade 2 tumors, a high gene expression grade index was associated with a higher risk of recurrence than a low gene expression grade index (hazard ratio = 3.61, 95% confidence interval = 2.25 to 5.78; P < .001, log-rank test). CONCLUSIONS: Gene expression grade index appeared to reclassify patients with histologic grade 2 tumors into two groups with high versus low risks of recurrence. This approach may improve the accuracy of tumor grading and thus its prognostic value.
Resumo:
A report of the annual meeting of the European Society of Human Genetics, Amsterdam, 6-9 May 2006.
Resumo:
To date, no effective method exists that predicts the response to preoperative chemoradiation (CRT) in locally advanced rectal cancer (LARC). Nevertheless, identification of patients who have a higher likelihood of responding to preoperative CRT could be crucial in decreasing treatment morbidity and avoiding expensive and time-consuming treatments. The aim of this study was to identify signatures or molecular markers related to response to pre-operative CRT in LARC. We analyzed the gene expression profiles of 26 pre-treatment biopsies of LARC (10 responders and 16 non-responders) without metastasis using Human WG CodeLink microarray platform. Two hundred and fifty seven genes were differentially over-expressed in the responder patient subgroup. Ingenuity Pathway Analysis revealed a significant ratio of differentially expressed genes related to cancer, cellular growth and proliferation pathways, and c-Myc network. We demonstrated that high Gng4, c-Myc, Pola1, and Rrm1 mRNA expression levels was a significant prognostic factor for response to treatment in LARC patients (p<0.05). Using this gene set, we were able to establish a new model for predicting the response to CRT in rectal cancer with a sensitivity of 60% and 100% specificity. Our results reflect the value of gene expression profiling to gain insight about the molecular pathways involved in the response to treatment of LARC patients. These findings could be clinically relevant and support the use of mRNA levels when aiming to identify patients who respond to CRT therapy.
Resumo:
Gene expression data from microarrays are being applied to predict preclinical and clinical endpoints, but the reliability of these predictions has not been established. In the MAQC-II project, 36 independent teams analyzed six microarray data sets to generate predictive models for classifying a sample with respect to one of 13 endpoints indicative of lung or liver toxicity in rodents, or of breast cancer, multiple myeloma or neuroblastoma in humans. In total, >30,000 models were built using many combinations of analytical methods. The teams generated predictive models without knowing the biological meaning of some of the endpoints and, to mimic clinical reality, tested the models on data that had not been used for training. We found that model performance depended largely on the endpoint and team proficiency and that different approaches generated models of similar performance. The conclusions and recommendations from MAQC-II should be useful for regulatory agencies, study committees and independent investigators that evaluate methods for global gene expression analysis.
Resumo:
Seborrheic keratoses (SKs) are common, benign epithelial tumors of the skin that do not, or very rarely, progress into malignancy, for reasons that are not understood. We investigated this by gene expression profiling of human SKs and cutaneous squamous cell carcinomas (SCCs) and found that several genes previously connected with keratinocyte tumor development were similarly modulated in SKs and SCCs, whereas the expression of others differed by only a few fold. In contrast, the tyrosine kinase receptor FGF receptor-3 (FGFR3) and the transcription factor forkhead box N1 (FOXN1) were highly expressed in SKs, and close to undetectable in SCCs. We also showed that increased FGFR3 activity was sufficient to induce FOXN1 expression, counteract the inhibitory effect of EGFR signaling on FOXN1 expression and differentiation, and induce differentiation in a FOXN1-dependent manner. Knockdown of FOXN1 expression in primary human keratinocytes cooperated with oncogenic RAS in the induction of SCC-like tumors, whereas increased FOXN1 expression triggered the SCC cells to shift to a benign SK-like tumor phenotype, which included increased FGFR3 expression. Thus,we have uncovered a positive regulatory loop between FGFR3 and FOXN1 that underlies a benign versus malignant skin tumor phenotype.
Resumo:
Arteriovenous-lymphatic endothelial cell fates are specified by the master regulators, namely, Notch, COUP-TFII, and Prox1. Whereas Notch is expressed in the arteries and COUP-TFII in the veins, the lymphatics express all 3 cell fate regulators. Previous studies show that lymphatic endothelial cell (LEC) fate is highly plastic and reversible, raising a new concept that all 3 endothelial cell fates may co-reside in LECs and a subtle alteration can result in a reprogramming of LEC fate. We provide a molecular basis verifying this concept by identifying a cross-control mechanism among these cell fate regulators. We found that Notch signal down-regulates Prox1 and COUP-TFII through Hey1 and Hey2 and that activated Notch receptor suppresses the lymphatic phenotypes and induces the arterial cell fate. On the contrary, Prox1 and COUP-TFII attenuate vascular endothelial growth factor signaling, known to induce Notch, by repressing vascular endothelial growth factor receptor-2 and neuropilin-1. We show that previously reported podoplanin-based LEC heterogeneity is associated with differential expression of Notch1 in human cutaneous lymphatics. We propose that the expression of the 3 cell fate regulators is controlled by an exquisite feedback mechanism working in LECs and that LEC fate is a consequence of the Prox1-directed lymphatic equilibrium among the cell fate regulators.
Resumo:
Background: The variety of DNA microarray formats and datasets presently available offers an unprecedented opportunity to perform insightful comparisons of heterogeneous data. Cross-species studies, in particular, have the power of identifying conserved, functionally important molecular processes. Validation of discoveries can now often be performed in readily available public data which frequently requires cross-platform studies.Cross-platform and cross-species analyses require matching probes on different microarray formats. This can be achieved using the information in microarray annotations and additional molecular biology databases, such as orthology databases. Although annotations and other biological information are stored using modern database models ( e. g. relational), they are very often distributed and shared as tables in text files, i.e. flat file databases. This common flat database format thus provides a simple and robust solution to flexibly integrate various sources of information and a basis for the combined analysis of heterogeneous gene expression profiles.Results: We provide annotationTools, a Bioconductor-compliant R package to annotate microarray experiments and integrate heterogeneous gene expression profiles using annotation and other molecular biology information available as flat file databases. First, annotationTools contains a specialized set of functions for mining this widely used database format in a systematic manner. It thus offers a straightforward solution for annotating microarray experiments. Second, building on these basic functions and relying on the combination of information from several databases, it provides tools to easily perform cross-species analyses of gene expression data.Here, we present two example applications of annotationTools that are of direct relevance for the analysis of heterogeneous gene expression profiles, namely a cross-platform mapping of probes and a cross-species mapping of orthologous probes using different orthology databases. We also show how to perform an explorative comparison of disease-related transcriptional changes in human patients and in a genetic mouse model.Conclusion: The R package annotationTools provides a simple solution to handle microarray annotation and orthology tables, as well as other flat molecular biology databases. Thereby, it allows easy integration and analysis of heterogeneous microarray experiments across different technological platforms or species.
Resumo:
Purpose. To investigate the role of the myocyte enhancer factor 2 (Mef2) transcription factor family in retinal diseases, Mef2c expression was assessed during retinal degeneration in the Rpe65(-/-) mouse model of Leber's congenital amaurosis (LCA). Mef2c-dependent expression of photoreceptor-specific genes was further addressed. Methods. Expression of Mef2 members was analyzed by oligonucleotide microarray, quantitative PCR (qPCR) and in situ hybridization. Mef2c-dependent transcriptional activity was assayed by luciferase assay in HEK293T cells. Results. Mef2c was the only Mef2 member markedly downregulated during retinal degeneration in Rpe65(-/-) mice. Mef2c mRNA level was decreased by more than 2 fold at 2 and 4 months and by 3.5 fold at 6 months in retinas of Rpe65(-/-) mice. Downregulation of Mef2c at the protein level was confirmed in Rpe65(-/-) retinas. The decrease in Mef2c mRNA levels in the developing Rpe65(-/-) retinas, from post-natal day (P)13 onward, was concomitant with the decreased expression of the rod-specific transcription factors Nrl and Nr2e3. Nrl was further shown to drive Mef2c transcriptional activity, supporting a physiological role for Mef2c in the retina. In addition, Mef2c appeared to act as a transcriptional repressor of its own expression, as well as those of the retina-specific retinal G-protein coupled receptor (Rgr), rhodopsin and M-opsin genes. Conclusions. These findings highlight the early altered regulation of the rod-specific transcriptional network in Rpe65-related disease. They further indicate that Mef2c may act as a novel transcription factor involved in the development and the maintenance of photoreceptor cells.
Resumo:
Mutations in LACERATA (LCR), FIDDLEHEAD (FDH), and BODYGUARD (BDG) cause a complex developmental syndrome that is consistent with an important role for these Arabidopsis genes in cuticle biogenesis. The genesis of their pleiotropic phenotypes is, however, poorly understood. We provide evidence that neither distorted depositions of cutin, nor deficiencies in the chemical composition of cuticular lipids, account for these features, instead suggesting that the mutants alleviate the functional disorder of the cuticle by reinforcing their defenses. To better understand how plants adapt to these mutations, we performed a genome-wide gene expression analysis. We found that apparent compensatory transcriptional responses in these mutants involve the induction of wax, cutin, cell wall, and defense genes. To gain greater insight into the mechanism by which cuticular mutations trigger this response in the plants, we performed an overlap meta-analysis, which is termed MASTA (MicroArray overlap Search Tool and Analysis), of differentially expressed genes. This suggested that different cell integrity pathways are recruited in cesA cellulose synthase and cuticular mutants. Using MASTA for an in silico suppressor/enhancer screen, we identified SERRATE (SE), which encodes a protein of RNA-processing multi-protein complexes, as a likely enhancer. In confirmation of this notion, the se lcr and se bdg double mutants eradicate severe leaf deformations as well as the organ fusions that are typical of lcr and bdg and other cuticular mutants. Also, lcr does not confer resistance to Botrytis cinerea in a se mutant background. We propose that there is a role for SERRATE-mediated RNA signaling in the cuticle integrity pathway.