958 resultados para Oil wells


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os poços HPHT atravessam zonas anormalmente pressurizadas e com altos gradientes de temperatura. Esses poços apresentam elevadas concentrações de tensões produzidas pelas operações de perfuração e fraturamento hidráulico, flutuações da pressão e temperatura, forças dinâmicas geradas durante a perfuração, formações inconsolidadas, entre outros aspectos, podendo resultar em falhas mecânicas na bainha de cimento. Tais falhas comprometem a estabilidade mecânica do poço e o isolamento das zonas produtoras de óleos e/ou gás. Para que operações corretivas não se façam necessárias, é preciso adequar as pastas às condições de cada poço. Sistemas de pastas de cimento para poços HPHT requerem um bom controle de suas propriedades termo-mecânicas. Visto que a temperaturas superiores a 110 oC (230 oF) o cimento, após alcançar um valor máximo de resistência, inicia um processo de perda de resistência (retrogressão). Para prevenir esse efeito substitui-se parcialmente o cimento Portland por sílica com objetivo de incrementar a reação pozolânica. Esta reação modifica a trajetória do processo natural de hidratação do cimento, o gel de silicato de cálcio hidratado (C-S-H) se converte em várias outras fases com maior resistência. Polímeros também são adicionados para proporcionar maior flexibilidade e agir como barreira à propagação de trincas desenvolvidas sob tensão. O presente trabalho teve como objetivo estudar o comportamento do sistema cimento/sílica/polímero quando submetido às condições de alta temperatura e alta pressão. Foram formuladas pastas de cimento puro, pastas contendo 40 % BWOC de sílica flour e pastas com diferentes concentrações de poliuretana (5 % a 25 %) e 40 % BWOC de sílica flour. O peso específico das pastas foi fixado em 1,87 g/cm3 (15,6 lb/gal). Os resultados demonstram que as resistências da pasta contendo 40% de sílica e das com adição de polímero foram muito superiores a da pasta de cimento puro, não ocorrendo o efeito da retrogressão. As pastas com polímero apresentaram um crescente aumento da tenacidade com o aumento da concentração da mesma, sendo assim capaz de suportar as tensões. Além de se manterem estáveis termicamente acima de 180 ºC. O sistema também apresentou excelentes resultados de filtrado, reologia, água livre, estabilidade e permeabilidade. Sendo assim, o mesmo mostrou ser aplicável a poços HPHT

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Compound Portland cements are commonly used in construction, among them stand out the CPII-Z, CPII-F and CPIV. These types of cement have limited application on oil well cementing, having its compositional characteristics focused specifically to construction, as cement for use in oil wells has greater complexity and properties covering the specific needs for each well to be coated. For operations of oil wells cementing are used Portland cements designed specifically for this purpose. The American Petroleum Institute (API) classifies cements into classes designated by letters A to J. In the petroleum industry, often it is used Class G cement, which is cement that meets all requirements needed for cement from classes A to E. According to the scenario described above, this paper aims to present a credible alternative to apply the compound cements in the oil industry due to the large availability of this cement in relation to oil well cements. The cements were micro structurally characterized by XRF, XRD and SEM tests, both in its anhydrous and hydrated state. Later technological tests were conducted to determine the limits set by the NBR 9831. Among the compound cements studied, the CPII-Z showed satisfactory properties for use in primary and secondary operations of oil wells up to 1200 meters cementing

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cementing operations may occur at various stages of the life cycle of an oil well since its construction until its definitive abandonment. There are some situations in which the interest zones are depleted or have low fracture pressure. In such cases, the adoption of lowdensity cement slurries is an efficient solution. To this end, there are basically three ways to reduce the density of cement slurries: using microspheres, water extending additives or foamed cement. The objective of this study is to formulate, to study and to characterize lowdensity foamed cement, using an air entrainment surfactant with vermiculite or diatomite as water extenders and stabilizers. The methodology consists on preparation and evaluation of the slurries under the American Petroleum Institute (API) and the Brazilian Association of Technical Standards (ABNT) guidelines. Based on calculated densities between 13 and 15 ppg (1.559 and 1.799 g/cm3), the slurries were prepared with fixed surfactant concentration, varying the concentrations of vermiculite and diatomite and were compared with the base slurries. The results of plastic viscosity, yield point and gel strength and the compressive strength for 24 h showed that the slurries presented suitable rheology and mechanical strength for cementing operations in oil wells, and had their densities reduced between 8.40 and 11.89 ppg (1.007 and 1.426 g/cm3). The conclusion is that is possible, under atmospheric conditions, to obtain light weighted foamed cement slurries with satisfactory rheological and mechanical properties by means of air entrainment and mineral additions with extenders and stabilizers effects. The slurries have great potential for cementing operations; applicability in deep wells, in low fracture gradient formations and in depleted zones and bring cost savings by reducing the cementing consumption

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of complex systems has become a prestigious area of science, although relatively young . Its importance was demonstrated by the diversity of applications that several studies have already provided to various fields such as biology , economics and Climatology . In physics , the approach of complex systems is creating paradigms that influence markedly the new methods , bringing to Statistical Physics problems macroscopic level no longer restricted to classical studies such as those of thermodynamics . The present work aims to make a comparison and verification of statistical data on clusters of profiles Sonic ( DT ) , Gamma Ray ( GR ) , induction ( ILD ) , neutron ( NPHI ) and density ( RHOB ) to be physical measured quantities during exploratory drilling of fundamental importance to locate , identify and characterize oil reservoirs . Software were used : Statistica , Matlab R2006a , Origin 6.1 and Fortran for comparison and verification of the data profiles of oil wells ceded the field Namorado School by ANP ( National Petroleum Agency ) . It was possible to demonstrate the importance of the DFA method and that it proved quite satisfactory in that work, coming to the conclusion that the data H ( Hurst exponent ) produce spatial data with greater congestion . Therefore , we find that it is possible to find spatial pattern using the Hurst coefficient . The profiles of 56 wells have confirmed the existence of spatial patterns of Hurst exponents , ie parameter B. The profile does not directly assessed catalogs verification of geological lithology , but reveals a non-random spatial distribution

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An economical solution for cementing oil wells is the use of pre-prepared dry mixtures containing cement and additives. The mixtures may be formulated, prepared and transported to the well where is added water to be pumped.Using this method, becomes dispensable to prepare the cement mixes containing additives in the cementing operation, reducing the possibility of error. In this way, the aim of this work is to study formulations of cement slurries containing solid additives for primary cementing of oil wells onshore for typical depths of 400, 800 and 1,200 meters. The formulations are comprised of Special Class Portland cement, mineral additions and solids chemical additives.The formulated mixtures have density of 1.67 g / cm ³ (14.0 lb / gal). Their optimization were made through the analysis of the rheological parameters, fluid loss results, free water, thickening time, stability test and mechanical properties.The results showed that mixtures are in conformity the specifications for cementing oil wells onshore studied depths

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although there are a wide variety of additives that act in fresh state, to adjust the properties of cement, there is also a search by additions that improve the tenacity of the cement in the hardened state. This, in turn, can often be increased by inserting fibers, which act on the deflection of microcracks. This study aimed to use a microfiber glass wool (silica-based) as an additive reinforcing the cement matrix, improving the rupture tenacity, in order to prevent the propagation of microcracks in the cement sheath commonly found in oil wells submitted to high temperatures. The fibers were added at different concentrations, 2 to 5% (BWOC) and varied average sizes, grinding for 90 s, 180 s, 300 s, 600 s. The cement slurries were made with a density of 1,90 g/ cm3 (15,6 lb/gal), using Portland cement CPP- Special Class as the hydraulic binder and 40% silica flour. The characterization of the fiber was made by scanning electron microscopy (SEM), particle size by sieving, X-ray fluorescence (XRF), X-ray diffraction (XRD) and thermogravimetry (TG / DTG). Were performed technological tests set by the API (American Petroleum Institute) by rheology, stability, free water, compressive strength, as well as testing rupture energy, elastic modulus and permeability. The characterization results showed good thermal stability of the microfiber glass wool for application in oil wells submitted to steam injection and, also, that from the particle size data, it was possible to suggest that microfibers milled up to 300 s, are ideal to act as reinforcement to the cement slurries. The rheological parameters, there was committal of plastic viscosity when larger lengths were inserted of microfiber (F90). The values obtained by free water and stability were presented according to API. The mechanical properties, the incorporation of microfiber to the cement slurries gave better rupture tenacity, as compared to reference cement slurries. The values of compressive strength, elastic modulus and permeability have been maintained with respect to the reference cement slurries. Thus, cement slurries reinforced with microfiber glass wool can ensure good application for cementing oil wells submitted to steam injection, which requires control of microcracks, due to the thermal gradients

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of oil wells drilling requires additional cares mainly if the drilling is in offshore ultra deep water with low overburden pressure gradients which cause low fracture gradients and, consequently, difficult the well drilling by the reduction of the operational window. To minimize, in the well planning phases, the difficulties faced by the drilling in those sceneries, indirect models are used to estimate fracture gradient that foresees approximate values for leakoff tests. These models generate curves of geopressures that allow detailed analysis of the pressure behavior for the whole well. Most of these models are based on the Terzaghi equation, just differentiating in the determination of the values of rock tension coefficient. This work proposes an alternative method for prediction of fracture pressure gradient based on a geometric correlation that relates the pressure gradients proportionally for a given depth and extrapolates it for the whole well depth, meaning that theses parameters vary in a fixed proportion. The model is based on the application of analytical proportion segments corresponding to the differential pressure related to the rock tension. The study shows that the proposed analytical proportion segments reaches values of fracture gradient with good agreement with those available for leakoff tests in the field area. The obtained results were compared with twelve different indirect models for fracture pressure gradient prediction based on the compacting effect. For this, a software was developed using Matlab language. The comparison was also made varying the water depth from zero (onshore wellbores) to 1500 meters. The leakoff tests are also used to compare the different methods including the one proposed in this work. The presented work gives good results for error analysis compared to other methods and, due to its simplicity, justify its possible application

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increase hydrocarbons production is the main goal of the oilwell industry worldwide. Hydraulic fracturing is often applied to achieve this goal due to a combination of attractive aspects including easiness and low operational costs associated with fast and highly economical response. Conventional fracturing usually involves high-flowing high-pressure pumping of a viscous fluid responsible for opening the fracture in the hydrocarbon producing rock. The thickness of the fracture should be enough to assure the penetration of the particles of a solid proppant into the rock. The proppant is driven into the target formation by a carrier fluid. After pumping, all fluids are filtered through the faces of the fracture and penetrate the rock. The proppant remains in the fracture holding it open and assuring high hydraulic conductivity. The present study proposes a different approach for hydraulic fracturing. Fractures with infinity conductivity are formed and used to further improve the production of highly permeable formations as well as to produce long fractures in naturally fractured formations. Naturally open fractures with infinite conductivity are usually encountered. They can be observed in rock outcrops and core plugs, or noticed by the total loss of circulation during drilling (even with low density fluids), image profiles, pumping tests (Mini-Frac and Mini Fall Off), and injection tests below fracturing pressure, whose flow is higher than expected for radial Darcian ones. Naturally occurring fractures are kept open by randomly shaped and placed supporting points, able to hold the faces of the fracture separate even under typical closing pressures. The approach presented herein generates infinite conductivity canal held open by artificially created parallel supporting areas positioned both horizontally and vertically. The size of these areas is designed to hold the permeable zones open supported by the impermeable areas. The England & Green equation was used to theoretically prove that the fracture can be held open by such artificially created set of horizontal parallel supporting areas. To assess the benefits of fractures characterized by infinite conductivity, an overall comparison with finite conductivity fractures was carried out using a series of parameters including fracture pressure loss and dimensionless conductivity as a function of flow production, FOI folds of increase, flow production and cumulative production as a function of time, and finally plots of net present value and productivity index

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Electrical Submersible Pumping is an artificial lift method for oil wells employed in onshore and offshore areas. The economic revenue of the petroleum production in a well depends on the oil flow and the availability of lifting equipment. The fewer the failures, the lower the revenue shortfall and costs to repair it. The frequency with which failures occur depends on the operating conditions to which the pumps are submitted. In high-productivity offshore wells monitoring is done by operators with engineering support 24h/day, which is not economically viable for the land areas. In this context, the automation of onshore wells has clear economic advantages. This work proposes a system capable of automatically control the operation of electrical submersible pumps, installed in oil wells, by an adjustment at the electric motor rotation based on signals provided by sensors installed on the surface and subsurface, keeping the pump operating within the recommended range, closest to the well s potential. Techniques are developed to estimate unmeasured variables, enabling the automation of wells that do not have all the required sensors. The automatic adjustment, according to an algorithm that runs on a programmable logic controller maintains the flow and submergence within acceptable parameters avoiding undesirable operating conditions, as the gas interference and high engine temperature, without need to resort to stopping the engine, which would reduce the its useful life. The control strategy described, based on modeling of physical phenomena and operational experience reported in literature, is materialized in terms of a fuzzy controller based on rules, and all generated information can be accompanied by a supervisory system

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Electrical Submersible Pump (ESP) has been one of the most appropriate solutions for lifting method in onshore and offshore applications. The typical features for this application are adverse temperature, viscosity fluids and gas environments. The difficulties in equipments maintenance and setup contributing to increasing costs of oil production in deep water, therefore, the optimization through automation can be a excellent approach for decrease costs and failures in subsurface equipment. This work describe a computer simulation related with the artificial lifting method ESP. This tool support the dynamic behavior of ESP approach, considering the source and electric energy transmission model for the motor, the electric motor model (including the thermal calculation), flow tubbing simulation, centrifugal pump behavior simulation with liquid nature effects and reservoir requirements. In addition, there are tri-dimensional animation for each ESP subsytem (transformer, motor, pump, seal, gas separator, command unit). This computer simulation propose a improvement for monitoring oil wells for maximization of well production. Currenty, the proprietaries simulators are based on specific equipments manufactures. Therefore, it is not possible simulation equipments of another manufactures. In the propose approach there are support for diverse kinds of manufactures equipments

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wireless sensors and actuators Networks specified by IEEE 802.15.4, are becoming increasingly being applied to instrumentation, as in instrumentation of oil wells with completion Plunger Lift type. Due to specific characteristics of the environment being installed, it s find the risk of compromising network security, and presenting several attack scenarios and the potential damage from them. It`s found the need for a more detailed security study of these networks, which calls for use of encryption algorithms, like AES-128 bits and RC6. So then it was implement the algorithms RC6 and AES-128, in an 8 bits microcontroller, and study its performance characteristics, critical for embedded applications. From these results it was developed a Hybrid Algorithm Cryptographic, ACH, which showed intermediate characteristics between the AES and RC6, more appropriate for use in applications with limitations of power consumption and memory. Also was present a comparative study of quality of security among the three algorithms, proving ACH cryptographic capability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This document proposes to describe a pilot plant for oil wells equipped with plunger lift. In addition to a small size (21,5 meters) and be on the surface, the plant s well has part of its structure in transparent acrylic, allowing easy visualization of phenomena inherent to the method. The rock formation where the well draws its pilot plant fluids (water and air) is simulated by a machine room where they are located the compressor and water pump for the production of air and water. To keep the flow of air and water with known and controlled values the lines that connect the machine room to the wellhole are equipped with flow sensors and valves. It s developed a supervisory system that allows the user a real-time monitoring of pressures and flow rates involved. From the supervisor is still allowed the user can choose how they will be controlled cycles of the process, whether by time, pressure or manually, and set the values of air flow to the water used in cycles. These values can be defined from a set point or from the percentage of valve opening. Results from tests performed on the plant using the most common forms of control by time and pressure in the coating are showed. Finally, they are confronted with results generated by a simulator configured with the the pilot plant s feature

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The method of artificial lift of progressing cavity pump is very efficient in the production of oils with high viscosity and oils that carry a great amount of sand. This characteristic converted this lift method into the second most useful one in oil fields production. As it grows the number of its applications it also increases the necessity to dominate its work in a way to define it the best operational set point. To contribute to the knowledge of the operational method of artificial lift of progressing cavity pump, this work intends to develop a computational simulator for oil wells equipped with an artificial lift system. The computational simulator of the system will be able to represent its dynamic behavior when submitted to the various operational conditions. The system was divided into five subsystems: induction motor, multiphase flows into production tubing, rod string, progressing cavity pump and annular tubing-casing. The modeling and simulation of each subsystem permitted to evaluate the dynamic characteristics that defined the criteria connections. With the connections of the subsystems it was possible to obtain the dynamic characteristics of the most important arrays belonging to the system, such as: pressure discharge, pressure intake, pumping rate, rod string rotation and torque applied to polish string. The shown results added to a friendly graphical interface converted the PCP simulator in a great potential tool with a didactic characteristic in serving the technical capability for the system operators and also permitting the production engineering to achieve a more detail analysis of the dynamic operational oil wells equipped with the progressing cavity pump

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The using of supervision systems has become more and more essential in accessing, managing and obtaining data of industrial processes, because of constant and frequent developments in industrial automation. These supervisory systems (SCADA) have been widely used in many industrial environments to store process data and to control the processes in accordance with some adopted strategy. The SCADA s control hardware is the set of equipments that execute this work. The SCADA s supervision software accesses process data through the control hardware and shows them to the users. Currently, many industrial systems adopt supervision softwares developed by the same manufacturer of the control hardware. Usually, these softwares cannot be used with other equipments made by distinct manufacturers. This work proposes an approach for developing supervisory systems able to access process information through different control hardwares. An architecture for supervisory systems is first defined, in order to guarantee efficiency in communication and data exchange. Then, the architecture is applied in a supervisory system to monitor oil wells that use distinct control hardwares. The implementation was modeled and verified by using the formal method of the Petri networks. Finally, experimental results are presented to demonstrate the applicability of the proposed solution

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The continuous gas lift method is the main artificial lifting method used in the oil industry for submarine wells, due to its robustness and the large range of flow rate that the well might operate. Nowadays, there is a huge amount of wells producing under this mechanism. This method of elevation has a slow dynamics due to the transients and a correlation between the injected gas rate and the of produced oil rate. Electronics controllers have been used to adjust many parameters of the oil wells and also to improve the efficiency of the gas lift injection system. This paper presents a intelligent control system applied to continuous gas injection in wells, based in production s rules, that has the target of keeping the wells producing during the maximum period of time, in its best operational condition, and doing automatically all necessary adjustments when occurs some disturbance in the system. The author also describes the application of the intelligent control system as a tool to control the flow pressure in the botton of the well (Pwf). In this case, the control system actuates in the surface control valve