926 resultados para Oil well drilling.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

At head of title : Draft.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During its operations, the oil industry generates a lot of waste, including gravel from drilling. Control of environmental impacts caused by this waste represents a major challenge. Such impacts can be minimized when it is given an appropriate management by being properly treated and properly disposed or recycled. The properties of these materials can be greatly influenced when a waste is added to its composition. This work aims to study the incorporation of gravel waste oil-well drilling in the standard body for production of red ceramic from a ceramic industry in São Gonçalo do Amarante / RN. The success of the incorporation can minimize costs in the production of ceramic pieces and reduce the environmental impacts caused by waste. The raw materials used were collected, characterized, and formulated with the percentages of 0%, 20% and 40% by weight of substitution of residue were synthesized at temperatures of 900, 1.010 and 1.120 °C using 30 minute firing intervals, 1 hour and 30min and 2 hours and 30 minutes, based on a factorial design 2³. Samples were then subjected to the tests of Water Absorption, Linear Retraction Firing, Flexural Rupture Strength, Apparent Porosity and Apparent Specific mass and Scanning Electron Microscopy (SEM) of break section. The results showed that the use of the residue for the manufacture of the ceramic products is possible (tiles, bricks and massive hollow bricks) replacing the clay to 40%, meeting the requirements of the standard and the literature for the technological properties of the final product.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal-ceramic interfaces are present in tricone drill bits with hard ceramic inserts for oil well drilling operations. The combination of actions of cutting, crushing and breaking up of rocks results in the degradation of tricone drill bits by wear, total or partial rupture of the drill bit body or the ceramic inserts, thermal shock and corrosion. Also the improper pressfitting of the ceramic inserts on the bit body may cause its total detachment, and promote serious damages to the drill bit. The improvement on the production process of metal-ceramic interfaces can eliminate or minimize some of above-mentioned failures presented in tricone drill bits, optimizing their lifetime and so reducing drilling metric cost. Brazing is a widely established technique to join metal-ceramic materials, and may be an excellent alternative to the common mechanical press fitting process of hard ceramic inserts on the steel bit body for tricone drill bit. Wetting phenomena plays an essential role in the production of metal/ceramic interfaces when a liquid phase is present in the process. In this work, 72Silver-28Copper eutectic based brazing alloys were melted onto zirconia, silicon nitride and tungsten carbide/Co substrates under high vacuum. Contact angle evolution was measured and graphically plotted, and the interfaces produced were analysed by SEM-EDX. The AgCu eutectic alloy did not wet any ceramic substrates, showing high contact angles, and so without chemical interaction between the materials. Better results were found for the systemns containing 3%wt of titanium in the AgCu alloy. The presence os titanium as a solute in the alloy produces wettable cand termodinamically stable compounds, increasing the ceramics wetting beahviour

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The new oil reservoirs discoveries in onshore and ultra deep water offshore fields and complex trajectories require the optimization of procedures to reduce the stops operation during the well drilling, especially because the platforms and equipment high cost, and risks which are inherent to the operation. Among the most important aspects stands out the drilling fluids project and their behavior against different situations that may occur during the process. By means of sedimentation experiments, a correlation has been validated to determe the sedimentation particles velocity in variable viscosity fluids over time, applying the correction due to effective viscosity that is a shear rate and time function. The viscosity evolution over time was obtained by carrying out rheologic tests using a fixed shear rate, small enough to not interfere in the fluid gelling process. With the sedimentation particles velocity and the fluid viscosity over time equations an iterative procedure was proposed to determine the particles displacement over time. These equations were implemented in a case study to simulate the cuttings sedimentation generated in the oil well drilling during stops operation, especially in the connections and tripping, allowing the drilling fluid project in order to maintain the cuttings in suspension, avoiding risks, such as stuck pipe and in more drastic conditions, the loss of the well

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cementing operation is one of the most important stages in the oil well drilling processes and has main function to form hydraulic seal between the various permeable zones traversed by the well. However, several problems may occur with the cement sheath, either during primary cementing or during the well production period. Cements low resistance can cause fissures in the cement sheath and compromise the mechanical integrity of the annular, resulting in contamination of groundwater and producing zones. Several researches show that biomass ash, in particular, those generated by the sugarcane industry have pozzolanic activity and can be added in the composition of the cementing slurries in diverse applications, providing improvements in mechanical properties, revenue and cement durability. Due to the importance of a low cost additive that increases the mechanical properties in a well cementing operations, this study aimed to potentiate the use of sugarcane bagasse ash as pozzolanic material, evaluate the mechanisms of action of this one on cement pastes properties and apply this material in systems slurries aimed to cementing a well with 800 m depth and geothermal gradient of 1.7 °F/100 ft, as much primary cementing operations as squeeze. To do this, the ash beneficiation methods were realized through the processes of grinding, sifting and reburning (calcination) and then characterization by X-ray fluorescence, XRD, TG / DTG, specific surface area, particle size distribution by laser diffraction and mass specific. Moreover, the ash pozzolanic activity added to the cement at concentrations of 0%, 20% and 40% BWOC was evaluated by pozzolanic activity index with lime and with Portland cement. The evaluation of the pozzolanic activity by XRD, TG / DTG and compressive strength confirmed the ash reactivity and indicated that the addition of 20% in the composition of cement slurries produces improvement 34% in the mechanical properties of the slurry cured. Cement slurries properties evaluated by rheological measurements, fluid loss, free fluid, slurry sedimentation, thickening time and sonic strength (UCA) were satisfactory and showed the viability of using the sugarcane ash in cement slurries composition for well cementing

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of oil wells drilling requires additional cares mainly if the drilling is in offshore ultra deep water with low overburden pressure gradients which cause low fracture gradients and, consequently, difficult the well drilling by the reduction of the operational window. To minimize, in the well planning phases, the difficulties faced by the drilling in those sceneries, indirect models are used to estimate fracture gradient that foresees approximate values for leakoff tests. These models generate curves of geopressures that allow detailed analysis of the pressure behavior for the whole well. Most of these models are based on the Terzaghi equation, just differentiating in the determination of the values of rock tension coefficient. This work proposes an alternative method for prediction of fracture pressure gradient based on a geometric correlation that relates the pressure gradients proportionally for a given depth and extrapolates it for the whole well depth, meaning that theses parameters vary in a fixed proportion. The model is based on the application of analytical proportion segments corresponding to the differential pressure related to the rock tension. The study shows that the proposed analytical proportion segments reaches values of fracture gradient with good agreement with those available for leakoff tests in the field area. The obtained results were compared with twelve different indirect models for fracture pressure gradient prediction based on the compacting effect. For this, a software was developed using Matlab language. The comparison was also made varying the water depth from zero (onshore wellbores) to 1500 meters. The leakoff tests are also used to compare the different methods including the one proposed in this work. The presented work gives good results for error analysis compared to other methods and, due to its simplicity, justify its possible application

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increases in oil prices after the economic recession have been surprising for domestic oil production in the United States since the beginning of 2009. Not only did the conventional oil extraction increase, but unconventional oil production and exploration also improved greatly with the favorable economic conditions. This favorable economy encourages companies to invest in new reservoirs and technological developments. Recently, enhanced drilling techniques including hydraulic fracturing and horizontal drilling have been supporting the domestic economy by way of unconventional shale and tight oil from various U.S. locations. One of the main contributors to this oil boom is the unconventional oil production from the North Dakota Bakken field. Horizontal drilling has increased oil production in the Bakken field, but the economic issues of unconventional oil extraction are still debatable due to volatile oil prices, high decline rates of production, a limited production period, high production costs, and lack of transportation. The economic profitability and viability of the unconventional oil play in the North Dakota Bakken was tested with an economic analysis of average Bakken unconventional well features. Scenario analysis demonstrated that a typical North Dakota Bakken unconventional oil well is profitable and viable as shown by three financial metrics; net present value, internal rate of return, and break-even prices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cuttings return analysis is an important tool to detect and prevent problems during the petroleum well drilling process. Several measurements and tools have been developed for drilling problems detection, including mud logging, PWD and downhole torque information. Cuttings flow meters were developed in the past to provide information regarding cuttings return at the shale shakers. Their use, however, significantly impact the operation including rig space issues, interferences in geological analysis besides, additional personel required. This article proposes a non intrusive system to analyze the cuttings concentration at the shale shakers, which can indicate problems during drilling process, such as landslide, the collapse of the well borehole walls. Cuttings images are acquired by a high definition camera installed above the shakers and sent to a computer coupled with a data analysis system which aims the quantification and closure of a cuttings material balance in the well surface system domain. No additional people at the rigsite are required to operate the system. Modern Artificial intelligence techniques are used for pattern recognition and data analysis. Techniques include the Optimum-Path Forest (OPF), Artificial Neural Network using Multilayer Perceptrons (ANN-MLP), Support Vector Machines (SVM) and a Bayesian Classifier (BC). Field test results conducted on offshore floating vessels are presented. Results show the robustness of the proposed system, which can be also integrated with other data to improve the efficiency of drilling problems detection. Copyright 2010, IADC/SPE Drilling Conference and Exhibition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years, difficulties encountered in obtaining ground-water supplies with acceptable chemical characteristics in the Myakka River basin area led to the implementation of a test drilling program. Under this program, well drilling and data collection were executed in such a manner that all water-producing zones of the local aquifers, together with the quality and quantity of the water available, were effectively identified. A step-drilling method was utilized which allowed the collection of formation cuttings, water samples, and water-level data, from isolated zones in the well as drilling proceeded. The step drilling procedure is described. The driller's logs, geophysical logs, and chemical quality of water tables are presented.(Document has 66 pages.)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

钻井废水是油气井开采钻探过程中产生的废水,钻井废水成分复杂,有机物浓度高、色度高、悬浮物浓度高,水质变化大,排放点分散,不经处理排放会污染环境,破坏生态。随着石油工业的不断发展和国家环保法律法规的日益严格,钻井废水的治理也越来越受到重视。如何采用经济有效的方法处理废弃钻井液,对油气井开采业的可持续发展具有重要意义。本论文以遂宁磨153 井的钻井废水为主要研究对象,在对废水进行絮凝沉降预处理和生物法处理探索的基础上,针对钻井废水可生化性差的特点,采用水解酸化和Fenton 试剂改善钻井废水的可生化性,对反应过程进行了比较详细的考察,对可生化性改善的机理进行了探索。主要研究结论如下:1 用PFS 和PAC 配制的混合混凝剂对钻井废水COD 的去除效果比较显著,在最佳条件下COD 的去除率可达75%,且絮体沉降速度较快,出水pH 保持中性;2 水解酸化法处理钻井废水可显著改善废水的可生化性。经48 小时水解酸化处理,钻井废水的理论BOD5可提高约22 倍,表观BOD5/COD值由0.004 提高到0.034。用接触氧化反应器处理经水解酸化处理后的废水,处理效果比较稳定,COD平均去除率达35.5%;3 研究了Fenton反应中各影响因子对废水COD去除率、BOD5/COD的影响并分析其作用机制,确定了最佳条件:初始pH为4.0,H2O2/Fe2+(摩尔浓度比)为20,H2O2/COD(质量浓度比)为1,反应时间为2 个小时。此条件下,废水的COD去除率约为40%,BOD5/COD值从0.002~0.003 提高至0.15~0.2,可生化性得到很大提高。本论文的主要创新点在于:1 以成分复杂、水质变化大的气井钻井废水为研究对象,从理论BOD 和表观BOD 两方面对水解酸化过程中废水可生化性的变化进行了分析;2 对Fenton 试剂改善钻井废水可生化性的过程、主要影响因素进行了比较详细的考察。本论文的研究成果,可为生物法处理钻井废水的深入研究提供理论依据。Drilling wastewater is produced in the process of oil-gas well drilling,because of its complicated composition, high concentrate of organic compound andsuspended solid, high chroma, levity of water quality and decentralization ofdischarge point, it pollutes environment seriously if discharged without treatment.With the development of petroleum industry and the issuing of more strict laws forenvironmental protection, it has been paid more and more attention on drillingwastewater treatment. It is of great importance for the sustainable development ofoil-gas well drilling to treat drilling wastewater by economical and effective methods.In this paper, drilling wastewater of Mo No.153 well in Suining was studied asthe main object. On the basis of research on pre-treatment with flocculant andbiological treatment, and according to the character of poor biodegradability, thedrilling wastewater was treated by hydrolytic acidification and Fenton’s reagent toimprove its biodegradability. The process and mechanism of biodegradabilitychanging were investigated. The primary conclusions are:1 It is effective to treat drilling wastewater with mixing PFS and PAC asflocculant. The removal rates of COD came up to 75% under optimal conditions, thesedimentation rate of flocculation is rapid, and the pH value of treated water remainedneutral;2 The biodegradability of drilling wastewater was highly improved afterhydrolytic acidification process. The theoretic BOD5 of drilling wastewater increasedby 22 times and its detected BOD5/COD ratio increased from 0.004 to 0.034 afterhydrolytic acidification for 48 hours. The wastewater after hydrolytic acidificationwas treated by biological contact oxidation reactor. Stable treatment performance was achieved, and the average removal rates of COD came up to 35.5%;3 The effects of various affection factors on the removal efficiency of COD andBOD5/COD radio in treating drilling wastewater by Fenton’s reagent wereinvestigated and the mechanism was analyzed. The optimal conditions were: initialpH of solution was 4.0, the molar ratio of H2O2 and Fe2+ was 20, the concentrationratio of H2O2 and COD was 1 and the reaction time was 120 min. Under the aboveconditions, the removal efficiency was about 40% and the ratio of BOD5 and CODincreased from 0.002 ¡« 0.003 to 0.15 ¡« 0.2. The biodegradability of drillingwastewater was greatly improved.The innovations of this thesis are:1 The drilling wastewater was taken as the research object which hascomplicated composition and variational water quality, and the changes ofbiodegradability were analyzed from theoretic BOD and detected BOD aspects duringhydrolytic acidification process;2 The biodegradability changing process and primary affection factors of drillingwastewater treating by Fenton’s reagent were investigated.The results of this study could provide theoretic foundation for further researchon biological treatment of drilling wastewater.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sulige Gasfield, with a basically proven reserve as high as one trillion cubic meters, is one giant gas field discovered in China. The major gas -bearing layers are Upper Paleozoic strata with fluvial-lacustrine sedimentary facies. Generally, gas reservoirs in this field are characteristic by "five low" properties, namely low porosity, low permeability, low formation pressure, low productivity and low gas abundance. Reservoirs in this field also feature in a large distribution area, thin single sandbody thickness, poor reservoir physical properties, thin effective reservoir thickness, sharp horizontal and/or vertical changes in reservoir properties as well as poor connectivity between different reservoirs. Although outstanding achievements have been acquired in this field, there are still several problems in the evaluation and development of the reservoirs, such as: the relation between seismic attributes and reservoir property parameters is not exclusive, which yields more than one solution in using seismic attributes to predict reservoir parameters; the wave impedance distribution ranges of sandstone and mudstone are overlapped, means it is impossible to distinguish them through the application of post-stack impedance inversion; studies on seismic petrophysics, reservoir geophysical properties, wave reflection models and AVO features have a poor foundation, makes it difficult to recognize the specific differences between tight sandstone and gas-bearing sandstone and their distribution laws. These are the main reasons causing the low well drilling success rate and poor economic returns, which usually result in ineffective development and utilization of the field. Therefore, it is of great importance to perform studies on identification and prediction of effective reservoirs in low permeable sandstone strata. Taking the 2D and 3D multiwave-multicomponent seismic exploration block in Su6-Su5 area of Sulige field as a study area and He 8 member as target bed, analysis of the target bed sedimentary characteristics and logging data properties are performed, while criteria to identify effective reservoirs are determined. Then, techniques and technologies such as pre-stack seismic information (AVO, elastic impedance, wave-let absorption attenuation) and Gamma inversion, reservoir litological and geophysical properties prediction are used to increase the precision in identifying and predicting effective reservoirs; while P-wave and S-wave impedance, ratio of P/S wave velocities, rock elastic parameters and elastic impedance are used to perform sandstone gas-bearing property identification and gas reservoir thickness prediction. Innovative achievements are summarized as follows: 1. The study of this thesis is the first time that multiwave-multicomponent seismic data are used to identify and predict non-marine classic reservoirs in China. Through the application of multiwave-multicomponents seismic data and integration of both pre-stack and post-stack seismic data, a set of workflows and methods to perform high-precision prediction of effective reservoirs in low permeable sandstone is established systematically. 2. Four key techniques to perform effective reservoir prediction including AVO analysis, pre-stack elastic wave impedance inversion, elastic parameters inversion, and absorption attenuation analysis are developed, utilizing pre-stack seismic data to the utmost and increasing the correct rate for effective reservoir prediction to 83% from the former 67% with routine methods. 3. This thesis summarizes techniques and technologies used in the identification reservoir gas-bearing properties using multiwave-multicomponent seismic data. And for the first time, quantitative analysis on reservoir fluids such as oil, gas, and/or water are carried out, and characteristic lithology prediction techniques through the integration of pre-stack and post-stack seismic prediction techniques, common seismic inversion and rock elastic parameters inversion, as well as P-wave inversion and converted wave inversion is put forward, further increasing the correct rate of effective reservoir prediction in this area to 90%. 4. Ten seismic attribute parameters are selected in the 3D multi-wave area to perform a comprehensive evaluation on effective reservoirs using weighted-factor method. The results show that the first class effective reservoir covers an area of 10.08% of the study area, while the second and the third class reservoirs take 43.8% and 46% respectively, sharply increasing the success rate for appraisal and development wells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In order to developing reservoir of Upper of Ng at high-speed and high-efficient in Chengdao oilfield which is located in the bally shallow sea, the paper builds up a series of theory and means predicting and descripting reservoir in earlier period of oilfield development. There are some conclusions as follows. 1. It is the first time to form a series of technique of fine geological modeling of the channel-sandy reservoir by means of mainly seismic methods. These technique include the logging restriction seismic inversion, the whole three dimension seismic interpretation, seismic properties analysis and so on which are used to the 3-dimension distributing prediction of sandy body, structure and properties of the channel reservoir by a lot of the seismic information and a small quantity of the drilling and the logging information in the earlier stage of the oil-field development. It is the first time that these methods applied to production and the high-speed development of the shallow sea oilfield. The prediction sandy body was modified by the data of new drilling, the new reservoir prediction thinking of traced inversion is built. The applied effect of the technique was very well, according to approximately 200 wells belonging to 30 well groups in Chengdao oilfield, the drilling succeeded rate of the predicting sandy body reached 100%, the error total thickness only was 8%. 2. The author advanced the thinking and methods of the forecasting residual-oil prediction at the earlier stage of production. Based on well data and seismic data, correlation of sediment units was correlated by cycle-correlation and classification control methods, and the normalization and finely interpretation of the well logging and sedimentation micro-facies were acquired. On the region of poor well, using the logging restriction inversion technique and regarding finished drilling production well as the new restriction condition, the sand body distributing and its property were predicted again and derived 3-dimension pool geologic model including structure, reservoir, fluid, reservoir engineering parameter and producing dynamic etc. According to the reservoir geologic model, the reservoir engineering design was optimized, the tracking simulation of the reservoir numerical simulation was done by means of the dynamic data (pressure, yield and water content) of development well, the production rule and oil-water distributing rule was traced, the distributing of the remaining oil was predicted and controlled. The dynamic reservoir modeling method in metaphase of development was taken out. Based on the new drilling data, the static reservoir geologic model was momentarily modified, the research of the flow units was brought up including identifying flow units, evaluating flow units capability and establishing the fine flow units model; according to the dynamic data of production and well testing data, the dynamic tracing reservoir description was realized through the constant modification of the reservoir geologic model restricted these dynamic data by the theory of well testing and the reservoir numerical simulation. It was built the dynamic tracing reservoir model, which was used to track survey of the remaining oil on earlier period. The reservoir engineering tracking analysis technique on shallow sea oilfield was founded. After renewing the structure history since tertiary in Chengdao area by the balance section technique and estimating the activity character of the Chengbei fault by the sealing fault analysis technique, the meandering stream sediment pattern of the Upper of Ng was founded in which the meandering border was the uppermost reservoir unit. Based on the specialty of the lower rock component maturity and the structure maturity, the author founded 3 kinds of pore structure pattern in the Guanshang member of Chengdao oil-field in which the storing space mainly was primary (genetic) inter-granular pore, little was secondary solution pore and the inter-crystal pore tiny pore, and the type of throat mainly distributed as the slice shape and the contract neck shape. The positive rhythmic was briefly type included the simple positive rhythm, the complex positive rhythm and the compound rhythm. Interbed mainly is mudstone widely, the physical properties and the calcite interbed distribute localized. 5. The author synthetically analyzed the influence action of the micro-heterogeneity, the macro-heterogeneity and the structure heterogeneity to the oilfield water flood development. The efficiency of water flood is well in tiny structure of convex type or even type at top and bottom in which the water breakthrough of oil well is soon at the high part of structure when inject at the low part of structure, and the efficiency of water flood is poor in tiny structure of concave type at top and bottom. The remaining oil was controlled by sedimentary facies; the water flooding efficiency is well in the border or channel bar and is bad in the floodplain or the levee. The separation and inter layer have a little influence to the non-obvious positive rhythm reservoir, in which the remaining oil commonly locate within the 1-3 meter of the lower part of the separation and inter layer with lower water flooding efficiency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thesis show you seven interpretation models of erosion of MAs1+2 in the west of prospect and eroded gully of middle and east, form the interpretation technique how to built up eroded gully of the Ordovician top, according of the practical demand of oil-gas exploration in the ShanGanNing basin, using seismic information, combining well logging and well drilling data, Carefully analyzing geologic deposition background and well logging data, through a great quantity forward and inversion for geologic model and combination geologic model with seismic section. Related to research of reservoir absorption in the ShanGanNing basin, it firstly introduces PRONY transformation multidimensional filter. It can simultaneously express relationship of frequency and absorption decay coefficient, better than FUSAIPU analysis method; PRONY filter have obtain the better effect in the gas field of ZhenChuanBao in the ShanBei area after adopting PRONY filtering method to predict reservoir absorption, by analyzing fixed well and prediction of non-well drilling. In the ShanGanNing basin, general seismic inversion method can produce evident different results or misunderstanding because wave impedance and lithology, physical property, gas property are not sole, especially while have little impedance contrast and even have contract direction; the author carefully analyzes multi-parameter inversion technique, add natural gamma ray and natural potential and other parameter combined making model inversion method according of theory of seismic inversion and applying reservoir velocity and wave impedance information at last, we get the more directly reservoir physical property parameter, judging reservoir physical property is more exact. In accordance with geologic, seismic feature of Shan basin, the thesis conclude Ordovician system top erosion interpretation technology with ChangQing character, and reservoir thickness prediction technique combining inversion technique with wave character analysis, Reservoir physical property that is mainly absorption factor analysis and multi-parameter inversion and oil-gas prediction technology. These technologies obtain the better result in the oil-gas field exploration and have formed comprehensive research method and technology series with ShanGanNing character.