992 resultados para Ocean Circulation


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Arctic Ocean is, on average, the shallowest of Earth’s oceans. Its vast continental shelf areas, which account for approximately half of the Arctic Ocean’s total area, are heavily influenced by the surrounding land masses through river run-off and coastal erosion. As a main area of deep water formation, the Arctic is one of the main «engines» of global ocean circulation, due to large freshwater inputs, it is also strongly stratified. The Arctic Ocean’s complex oceanographic configuration is tightly linked to the atmosphere, the land, and the cryosphere. The physical dynamics not only drive important climate and global circulation patterns, but also control biogeochemical cycles and ecosystem dynamics. Current changes in Arctic sea-ice thickness and distribution, air and water temperatures, and water column stability are resulting in measurable shifts in the properties and functioning of the ocean and its ecosystems. The Arctic Ocean is forecast to shift to a seasonally ice-free ocean resulting in changes to physical, chemical, and biological processes. These include the exchange of gases across the atmosphere-ocean interface, the wind-driven ciruclation and mixing regimes, light and nutrient availability for primary production, food web dynamics, and export of material to the deep ocean. In anticipation of these changes, extending our knowledge of the present Arctic oceanography and these complex changes has never been more urgent.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Senior thesis written for Oceanography 444

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Under global warming, the predicted intensification of the global freshwater cycle will modify the net freshwater flux at the ocean surface. Since the freshwater flux maintains ocean salinity structures, changes to the density-driven ocean circulation are likely. A modified ocean circulation could further alter the climate, potentially allowing rapid changes, as seen in the past. The relevant feedback mechanisms and timescales are poorly understood in detail, however, especially at low latitudes where the effects of salinity are relatively subtle. In an attempt to resolve some of these outstanding issues, we present an investigation of the climate response of the low-latitude Pacific region to changes in freshwater forcing. Initiated from the present-day thermohaline structure, a control run of a coupled ocean-atmosphere general circulation model is compared with a perturbation run in which the net freshwater flux is prescribed to be zero over the ocean. Such an extreme experiment helps to elucidate the general adjustment mechanisms and their timescales. The atmospheric greenhouse gas concentrations are held constant, and we restrict our attention to the adjustment of the upper 1,000 m of the Pacific Ocean between 40°N and 40°S, over 100 years. In the perturbation run, changes to the surface buoyancy, near-surface vertical mixing and mixed-layer depth are established within 1 year. Subsequently, relative to the control run, the surface of the low-latitude Pacific Ocean in the perturbation run warms by an average of 0.6°C, and the interior cools by up to 1.1°C, after a few decades. This vertical re-arrangement of the ocean heat content is shown to be achieved by a gradual shutdown of the heat flux due to isopycnal (i.e. along surfaces of constant density) mixing, the vertical component of which is downwards at low latitudes. This heat transfer depends crucially upon the existence of density-compensating temperature and salinity gradients on isopycnal surfaces. The timescale of the thermal changes in the perturbation run is therefore set by the timescale for the decay of isopycnal salinity gradients in response to the eliminated freshwater forcing, which we demonstrate to be around 10-20 years. Such isopycnal heat flux changes may play a role in the response of the low-latitude climate to a future accelerated freshwater cycle. Specifically, the mechanism appears to represent a weak negative sea surface temperature feedback, which we speculate might partially shield from view the anthropogenically-forced global warming signal at low latitudes. Furthermore, since the surface freshwater flux is shown to play a role in determining the ocean's thermal structure, it follows that evaporation and/or precipitation biases in general circulation models are likely to cause sea surface temperature biases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The tropospheric response to a forced shutdown of the North Atlantic Ocean’s meridional overturning circulation (MOC) is investigated in a coupled ocean–atmosphere GCM [the third climate configuration of the Met Office Unified Model (HadCM3)]. The strength of the boreal winter North Atlantic storm track is significantly increased and penetrates much farther into western Europe. The changes in the storm track are shown to be consistent with the changes in near-surface baroclinicity, which can be linked to changes in surface temperature gradients near regions of sea ice formation and in the open ocean. Changes in the SST of the tropical Atlantic are linked to a strengthening of the subtropical jet to the north, which, combined with the enhanced storm track, leads to a pronounced split in the jet structure over Europe. EOF analysis and stationary box indices methods are used to analyze changes to the North Atlantic Oscillation (NAO). There is no consistent signal of a change in the variability of the NAO, and while the changes in the mean flow project onto the positive NAO phase, they are significantly different from it. However, there is a clear eastward shift of the NAO pattern in the shutdown run, and this potentially has implications for ocean circulation and for the interpretation of proxy paleoclimate records.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Atmosphere–ocean general circulation models (AOGCMs) predict a weakening of the Atlantic meridional overturning circulation (AMOC) in response to anthropogenic forcing of climate, but there is a large model uncertainty in the magnitude of the predicted change. The weakening of the AMOC is generally understood to be the result of increased buoyancy input to the north Atlantic in a warmer climate, leading to reduced convection and deep water formation. Consistent with this idea, model analyses have shown empirical relationships between the AMOC and the meridional density gradient, but this link is not direct because the large-scale ocean circulation is essentially geostrophic, making currents and pressure gradients orthogonal. Analysis of the budget of kinetic energy (KE) instead of momentum has the advantage of excluding the dominant geostrophic balance. Diagnosis of the KE balance of the HadCM3 AOGCM and its low-resolution version FAMOUS shows that KE is supplied to the ocean by the wind and dissipated by viscous forces in the global mean of the steady-state control climate, and the circulation does work against the pressure-gradient force, mainly in the Southern Ocean. In the Atlantic Ocean, however, the pressure-gradient force does work on the circulation, especially in the high-latitude regions of deep water formation. During CO2-forced climate change, we demonstrate a very good temporal correlation between the AMOC strength and the rate of KE generation by the pressure-gradient force in 50–70°N of the Atlantic Ocean in each of nine contemporary AOGCMs, supporting a buoyancy-driven interpretation of AMOC changes. To account for this, we describe a conceptual model, which offers an explanation of why AOGCMs with stronger overturning in the control climate tend to have a larger weakening under CO2 increase.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We review the procedures and challenges that must be considered when using geoid data derived from the Gravity and steady-state Ocean Circulation Explorer (GOCE) mission in order to constrain the circulation and water mass representation in an ocean 5 general circulation model. It covers the combination of the geoid information with timemean sea level information derived from satellite altimeter data, to construct a mean dynamic topography (MDT), and considers how this complements the time-varying sea level anomaly, also available from the satellite altimeter. We particularly consider the compatibility of these different fields in their spatial scale content, their temporal rep10 resentation, and in their error covariances. These considerations are very important when the resulting data are to be used to estimate ocean circulation and its corresponding errors. We describe the further steps needed for assimilating the resulting dynamic topography information into an ocean circulation model using three different operational fore15 casting and data assimilation systems. We look at methods used for assimilating altimeter anomaly data in the absence of a suitable geoid, and then discuss different approaches which have been tried for assimilating the additional geoid information. We review the problems that have been encountered and the lessons learned in order the help future users. Finally we present some results from the use of GRACE geoid in20 formation in the operational oceanography community and discuss the future potential gains that may be obtained from a new GOCE geoid.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Drake Passage is the narrowest constriction of the Antarctic Circumpolar Current (ACC) in the Southern Ocean, with implications for global ocean circulation and climate. We review the long-term sustained monitoring programmes that have been conducted at Drake Passage, dating back to the early part of the twentieth century. Attention is drawn to numerous breakthroughs that have been made from these programmes, including (a) the first determinations of the complex ACC structure and early quantifications of its transport; (b) realization that the ACC transport is remarkably steady over interannual and longer periods, and a growing understanding of the processes responsible for this; (c) recognition of the role of coupled climate modes in dictating the horizontal transport, and the role of anthropogenic processes in this; (d) understanding of mechanisms driving changes in both the upper and lower limbs of the Southern Ocean overturning circulation, and their impacts. It is argued that monitoring of this passage remains a high priority for oceanographic and climate research, but that strategic improvements could be made concerning how this is conducted. In particular, long-term programmes should concentrate on delivering quantifications of key variables of direct relevance to large-scale environmental issues: in this context, the time-varying overturning circulation is, if anything, even more compelling a target than the ACC flow. Further, there is a need for better international resource-sharing, and improved spatio-temporal coordination of the measurements. If achieved, the improvements in understanding of important climatic issues deriving from Drake Passage monitoring can be sustained into the future.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The meridional overturning circulation (MOC) is part of a global ocean circulation that redistributes heat from Equatorial to Polar regions. In the Atlantic the MOC carries heat northward (the Atlantic Heat Conveyor) which is released to the atmosphere and maintains UK temperatures between 3 to 5°C higher than elsewhere at similar latitudes. However, the present strength and structure of the MOC may not continue. The 2007 IPCC assessment report (IPCC, 2007) suggests that there is less than 10% chance of abrupt changes during the 21st Century, but that there is greater than 90% chance that MOC will slow by an average of 25% compared to pre-industrial levels, offsetting some of the warming over the European sector of the North Atlantic, and contributing to the rate of sea-level-rise. Daily observations using the RAPID MOC mooring array at 26.5°N are providing a continuous and growing time-series of the MOC strength and structure, but the five year record is at present too short to establish trends in the annual mean MOC. Other observations do not at present provide a coherent Atlantic wide picture of MOC variability, and there is little evidence of any long-term slowing. Ocean assimilation models suggest a slowing over the past decade of around 10%. However, models still have many problems in representing ocean circulation and conclusions of change are very uncertain.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Atmosphere–ocean general circulation models (AOGCMs) predict a weakening of the Atlantic meridional overturning circulation (AMOC) in response to anthropogenic forcing of climate, but there is a large model uncertainty in the magnitude of the predicted change. The weakening of the AMOC is generally understood to be the result of increased buoyancy input to the north Atlantic in a warmer climate, leading to reduced convection and deep water formation. Consistent with this idea, model analyses have shown empirical relationships between the AMOC and the meridional density gradient, but this link is not direct because the large-scale ocean circulation is essentially geostrophic, making currents and pressure gradients orthogonal. Analysis of the budget of kinetic energy (KE) instead of momentum has the advantage of excluding the dominant geostrophic balance. Diagnosis of the KE balance of the HadCM3 AOGCM and its low-resolution version FAMOUS shows that KE is supplied to the ocean by the wind and dissipated by viscous forces in the global mean of the steady-state control climate, and the circulation does work against the pressure-gradient force, mainly in the Southern Ocean. In the Atlantic Ocean, however, the pressure-gradient force does work on the circulation, especially in the high-latitude regions of deep water formation. During CO2-forced climate change, we demonstrate a very good temporal correlation between the AMOC strength and the rate of KE generation by the pressure-gradient force in 50–70°N of the Atlantic Ocean in each of nine contemporary AOGCMs, supporting a buoyancy-driven interpretation of AMOC changes. To account for this, we describe a conceptual model, which offers an explanation of why AOGCMs with stronger overturning in the control climate tend to have a larger weakening under CO2 increase

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Koppen climate classification was applied to the output of atmospheric general circulation models and coupled atmosphere-ocean circulation models. The classification was used to validate model control runs of the present climate and to analyse greenhouse gas warming simulations The most prominent results of the global warming con~putationsw ere a retreat of regions of permafrost and the increase of areas with tropical rainy climates and dry climates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The occurrence of destructive mesoscale ‘polar low’ cyclones in the subpolar North Atlantic is projected to decline under anthropogenic change, due to an increase in atmospheric static stability. This letter reports on the role of changes in ocean circulation in shaping the atmospheric stability. In particular, the Atlantic Meridional Overturning Circulation (AMOC) is projected to weaken in response to anthropogenic forcing, leading to a local minimum in warming in this region. The reduced warming is restricted to the lower troposphere, hence contributing to the increase in static stability. Linear correlation analysis of the CMIP3 climate model ensemble suggests that around half of the model uncertainty in the projected stability response arises from the varied response of the AMOC between models.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Walker circulation is one of the major components of the large-scale tropical atmospheric circulation and variations in its strength are critical to equatorial Pacific Ocean circulation. It has been argued in the literature that during the 20th century the Walker circulation weakened, and that this weakening was attributable to anthropogenic climate change. By using updated observations, we show that there has been a rapid interdecadal enhancement of the Walker circulation since the late 1990s. Associated with this enhancement is enhanced precipitation in the tropical western Pacific, anomalous westerlies in the upper troposphere, descent in the central and eastern tropical Pacific, and anomalous surface easterlies in the western and central tropical Pacific. The characteristics of associated oceanic changes are a strengthened thermocline slope and an enhanced zonal SST gradient across the tropical Pacific. Many characteristics of these changes are similar to those associated with the mid-1970s climate shift with an opposite sign. We also show that the interdecadal variability of the Walker circulation in the tropical Pacific is inversely correlated to the interdecadal variability of the zonal circulation in the tropical Atlantic. An enhancement of the Walker circulation in the tropical Pacific is associated with a weakening zonal circulation in the tropical Atlantic and vise versa, implying an inter-Atlantic-Pacific connection of the zonal overturning circulation variation. Whether these recent changes will be sustained is not yet clear, but our research highlights the importance of understanding the interdecadal variability, as well as the long-term trends, that influence tropical circulation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sources and sinks of gravitational potential energy (GPE) play a rate-limiting role in the large scale ocean circulation. A key source is turbulent diapycnal mixing, whereby irre- versible mixing across isoneutral surfaces is enhanced by turbulent straining of these surfaces. This has motivated international observational efforts to map diapycnal mixing in the global ocean. However, in order to accurately relate the GPE supplied to the large scale circulation by diapycnal mixing to the mixing energy source, it is first necessary to determine the ratio, ξ , of the GPE generation rate to the available potential energy dissipation rate associated with turbulent mixing. Here, the link between GPE and hydro- static pressure is used to derive the GPE budget for a com- pressible ocean with a nonlinear equation of state. The role of diapycnal mixing is isolated and from this a global cli- matological distribution of ξ is calculated. It is shown that, for a given source of mixing energy, typically three times as much GPE is generated if the mixing takes place in bottom waters rather than in the pycnocline. This is due to GPE destruction by cabbelling in the pycnocline, as opposed to thermobaric enhancement of GPE generation by diapycnal mixing in the deep ocean.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Over the last decade, due to the Gravity Recovery And Climate Experiment (GRACE) mission and, more recently, the Gravity and steady state Ocean Circulation Explorer (GOCE) mission, our ability to measure the ocean’s mean dynamic topography (MDT) from space has improved dramatically. Here we use GOCE to measure surface current speeds in the North Atlantic and compare our results with a range of independent estimates that use drifter data to improve small scales. We find that, with filtering, GOCE can recover 70% of the Gulf Steam strength relative to the best drifter-based estimates. In the subpolar gyre the boundary currents obtained from GOCE are close to the drifter-based estimates. Crucial to this result is careful filtering which is required to remove small-scale errors, or noise, in the computed surface. We show that our heuristic noise metric, used to determine the degree of filtering, compares well with the quadratic sum of mean sea surface and formal geoid errors obtained from the error variance–covariance matrix associated with the GOCE gravity model. At a resolution of 100 km the North Atlantic mean GOCE MDT error before filtering is 5 cm with almost all of this coming from the GOCE gravity model.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around ‘climate response functions’ (CRFs), i.e. the response of the climate to ‘step’ changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an accelerating rate.