944 resultados para Obstacle
Resumo:
The purpose of this study was to investigate gait spatial parameters at the point of departure, with obstacle heights adjusted to individual body scale. Undergraduate student volunteers (M age=22.4 yr., SD=2.1; 6 women, 1 man) were asked to step once, then cross over an obstacle and stop. This behavior was video recorded to extract kinematic data. The obstacle heights corresponded to high (knee-height) and low obstacles (half the knee-height). Points of departure corresponded to far (length of the lower limb) and close (half the length of the lower limb). The close point of departure influenced the trailing foot's placement ahead of the obstacle as well as step length. The high obstacle influenced the trailing foot's toe clearance. An interaction between factors was observed for leading foot toe clearance. Results indicate that body scale affected the participants' locomotor behavior during the obstacle-avoidance task.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Crossing moving obstacles requires different space-time adjustments compared with stationary obstacles. Our aim was to investigate gait spatial and temporal parameters in the approach and crossing phases of a moving obstacle. We hypothesized that obstacle speed affects gait parameters, which allow us to distinguish locomotor strategies. Ten young adults walked and stepped over an obstacle that crossed their way perpendicularly, under three obstacle conditions: control-stationary obstacle, slow (1.07 m/s) and fast speed (1.71 m/s) moving obstacles. Gait parameters were different between obstacle conditions, especially on the slow speed. In the fast condition, the participants adopted predictive strategies during the approach and crossing phases. In the slow condition, they used an anticipatory strategy in both phases. We conclude that obstacle speed affects the locomotor behavior and strategies were distinct in the obstacle avoidance phases.
Resumo:
Locomotion generates a visual movement pattern characterized as optic flow. To explore how the locomotor adjustments are affected by this pattern, an experimental paradigm was developed to eliminate optic flow during obstacle avoidance. The aim was to investigate the contribution of optic flow in obstacle avoidance by using a stroboscopic lamp. Ten young adults walked on an 8m pathway and stepped over obstacles at two heights. Visual sampling was determined by a stroboscopic lamp (static and dynamic visual sampling). Three-dimensional kinematics data showed that the visual information about self-motion provided by the optic flow was crucial for estimating the distance from and the height of the obstacle. Participants presented conservative behavior for obstacle avoidance under experimental visual sampling conditions, which suggests that optic flow favors the coupling of vision to adaptive behavior for obstacle avoidance.
Resumo:
Incluye Bibliografía
Resumo:
The purpose of the current study was to investigate the role of visual information on gait control in people with Parkinson's disease as they crossed over obstacles. Twelve healthy individuals, and 12 patients with mild to moderate Parkinson's disease, walked at their preferred speeds along a walkway and stepped over obstacles of varying heights (ankle height or half-knee height), under three visual sampling conditions: dynamic (normal lighting), static (static visual samples, similar to stroboscopic lighting), and voluntary visual sampling. Subjects wore liquid crystal glasses for visual manipulation. In the static visual sampling condition only, the patients with Parkinson's disease made contact with the obstacle more often than did the control subjects. In the successful trials, the patients increased their crossing step width in the static visual sampling condition as compared to the dynamic and voluntary visual sampling conditions; the control group maintained the same step width for all visual sampling conditions. The patients showed lower horizontal mean velocity values during obstacle crossing than did the controls. The patients with Parkinson's disease were more dependent on optic flow information for successful task and postural stability than were the control subjects. Bradykinesia influenced obstacle crossing in the patients with Parkinson's disease. © 2013 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to investigate obstacle clearance and its variability in individuals with Alzheimer dementia (AD) as well as healthy elderly individuals while they approached and crossed an obstacle in their path. Fifteen people with AD and 15 age-matched/sex-matched healthy individuals (control group) participated in this study. Clinical assessment of both groups was performed by a neuropsychiatrist. Spatial-temporal parameters of 5 trials of unobstructed walking and 5 trials of obstacle crossing during walking (approach and crossing phases) were measured using a 3-dimensional optoelectronic system. The results indicated that individuals with AD showed higher variability in the approach phase for stride length and the horizontal distance from their trailing limb foot to the obstacle. However, their gait variability in the crossing phase was similar to the control group. In addition, the individuals with AD were found to walk slowly and with a short stride length in both conditions. In conclusion, individuals with AD had increased gait variability while approaching an obstacle during walking, indicating a deficit in planning to avoid obstacles that could be related to cognitive disorders. However, gait variability during the crossing phase may not be indicative of cognitive disorders in AD.