940 resultados para OXIDATIVE DNA-DAMAGE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA damage generated by oxidant byproducts of cellular metabolism has been proposed as a key factor in cancer and aging. Oxygen free radicals cause predominantly base damage in DNA, and the most frequent mutagenic base lesion is 7,8-dihydro-8-oxoguanine (8-oxoG). This altered base can pair with A as well as C residues, leading to a greatly increased frequency of spontaneous G·C→T·A transversion mutations in repair-deficient bacterial and yeast cells. Eukaryotic cells use a specific DNA glycosylase, the product of the OGG1 gene, to excise 8-oxoG from DNA. To assess the role of the mammalian enzyme in repair of DNA damage and prevention of carcinogenesis, we have generated homozygous ogg1−/− null mice. These animals are viable but accumulate abnormal levels of 8-oxoG in their genomes. Despite this increase in potentially miscoding DNA lesions, OGG1-deficient mice exhibit only a moderately, but significantly, elevated spontaneous mutation rate in nonproliferative tissues, do not develop malignancies, and show no marked pathological changes. Extracts of ogg1 null mouse tissues cannot excise the damaged base, but there is significant slow removal in vivo from proliferating cells. These findings suggest that in the absence of the DNA glycosylase, and in apparent contrast to bacterial and yeast cells, an alternative repair pathway functions to minimize the effects of an increased load of 8-oxoG in the genome and maintain a low endogenous mutation frequency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The therapeutic ratio for ionising radiation treatment of tumour is a trade-off between normal tissue side-effects and tumour control. Application of a radioprotector to normal tissue can reduce side-effects. Here we study the effects of a new radioprotector on the cellular response to radiation. Methylproamine is a DNA-binding radioprotector which, on the basis of published pulse radiolysis studies, acts by repair of transient radiation-induced oxidative species on DNA. To substantiate this hypothesis, we studied protection by methylproamine at both clonogenic survival and radiation-induced DNA damage, assessed by γH2AX (histone 2AX phosphorylation at serine 139) focus formation endpoints. Materials and methods: The human keratinocyte cell line FEP1811 was used to study clonogenic survival and yield of γH2AX foci following irradiation (137Cs γ-rays) of cells exposed to various concentrations of methylproamine. Uptake of methylproamine into cell nuclei was measured in parallel. Results: The extent of radioprotection at the clonogenic survival endpoint increased with methylproamine concentration up to a maximum dose modification factor (DMF) of 2.0 at 10 μM. At least 0.1 fmole/nucleus of methylproamine is required to achieve a substantial level of radioprotection (DMF of 1.3) with maximum protection (DMF of 2.0) achieved at 0.23 fmole/nucleus. The γH2AX focus yield per cell nucleus 45 min after irradiation decreased with drug concentration with a DMF of 2.5 at 10 μM. Conclusions: These results are consistent with the hypothesis that radioprotection by methylproamine is mediated by attenuation of the extent of initial DNA damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regular moderate physical activity reduces the risk of several noncommunicable diseases. At the same time, evidence exists for oxidative stress resulting from acute and strenuous exercise by enhanced formation of reactive oxygen and nitrogen species, which may lead to oxidatively modified lipids, proteins, and possibly negative effects on DNA stability. The limited data on ultraendurance events such as an Ironman triathlon show no persistent DNA damage after the events. However, when considering the effects of endurance exercise comparable to a (half) marathon or a short triathlon distance, no clear conclusions could be drawn. In order to clarify which components of exercise participation, such as duration, intensity, frequency, or training status of the subjects, have an impact on DNA stability, more information is clearly needed that combines the measurement of DNA damage, gene expression, and DNA repair mechanisms before, during, and after exercise of differing intensities and durations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[ENG]Aiming at an integrated and mechanistic view of the early biological effects of selected metals in the marine sentinel organism Mytilus galloprovincialis, we exposed mussels for 48 hours to 50, 100 and 200 nM solutions of equimolar Cd, Cu and Hg salts and measured cytological and molecular biomarkers in parallel. Focusing on the mussel gills, first target of toxic water contaminants and actively proliferating tissue, we detected significant dose-related increases of cells with micronuclei and other nuclear abnormalities in the treated mussels, with differences in the bioconcentration of the three metals determined in the mussel flesh by atomic absorption spectrometry. Gene expression profiles, determined in the same individual gills in parallel, revealed some transcriptional changes at the 50 nM dose, and substantial increases of differentially expressed genes at the 100 and 200 nM doses, with roughly similar amounts of up- and down-regulated genes. The functional annotation of gill transcripts with consistent expression trends and significantly altered at least in one dose point disclosed the complexity of the induced cell response. The most evident transcriptional changes concerned protein synthesis and turnover, ion homeostasis, cell cycle regulation and apoptosis, and intracellular trafficking (transcript sequences denoting heat shock proteins, metal binding thioneins, sequestosome 1 and proteasome subunits, and GADD45 exemplify up-regulated genes while transcript sequences denoting actin, tubulins and the apoptosis inhibitor 1 exemplify down-regulated genes). Overall, nanomolar doses of co-occurring free metal ions have induced significant structural and functional changes in the mussel gills: the intensity of response to the stimulus measured in laboratory supports the additional validation of molecular markers of metal exposure to be used in Mussel Watch programs

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laurencia terpenoid extract (LET) had been extracted from the red alga Laurencia tristicha. The study is to investigate the effects of LET supplementation on DNA oxidation and alkylation damages in mice. Forty healthy kunming mice weighing between 18g and 25g were randomly assigned into 4 groups, each consisting of ten animals. The mice were orally intubated respectively for 60 days with the designed concentrations of LET (25, 50, 100 mg/kg b.w.) for three exposed groups and salad oil (0.2 ml) for the blank group. Food and water were free for the animals. Mice in the blank and exposed groups were sacrificed after the last treatment and the blood of each animal was quickly taken for further experiments. The spontaneous and oxidized DNA damages of peripheral lymphocytes induced by H2O2 were analysed by SCGE. O-6-Methy-guanine (O-6-MeG) was measured by high performance capillary zone electrophoresis. There was no significantly difference in DNA spontaneous damage on peripheral lymphocytes of all the mice. The oxidative DNA damage in the 50 mg/Kg body weight supplement group are 286AU with the oxidation of 10 mu mol/L H2O2, significantly lower than the blank group 332AU (p<0.05). The contents of O-6-MeG in plasma in the 50mg/kg b.w. and 100mg/kg b.w. supplement group were 1.50 mu mol/L andl.88 mu mol/L, significantly lower than that of the blank group, which was 2.89 mu mol/L(p<0.05). The results from the present study indicated that the LET were rich in terpenoids and safety to be taken orally and it could improve antioxidative and decrease DNA damage effectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neurodegenerative disease Friedreich's ataxia (FRDA) is the most common autosomal-recessively inherited ataxia and is caused by a GAA triplet repeat expansion in the first intron of the frataxin gene. In this disease, transcription of frataxin, a mitochondrial protein involved in iron homeostasis, is impaired, resulting in a significant reduction in mRNA and protein levels. Global gene expression analysis was performed in peripheral blood samples from FRDA patients as compared to controls, which suggested altered expression patterns pertaining to genotoxic stress. We then confirmed the presence of genotoxic DNA damage by using a gene-specific quantitative PCR assay and discovered an increase in both mitochondrial and nuclear DNA damage in the blood of these patients (p<0.0001, respectively). Additionally, frataxin mRNA levels correlated with age of onset of disease and displayed unique sets of gene alterations involved in immune response, oxidative phosphorylation, and protein synthesis. Many of the key pathways observed by transcription profiling were downregulated, and we believe these data suggest that patients with prolonged frataxin deficiency undergo a systemic survival response to chronic genotoxic stress and consequent DNA damage detectable in blood. In conclusion, our results yield insight into the nature and progression of FRDA, as well as possible therapeutic approaches. Furthermore, the identification of potential biomarkers, including the DNA damage found in peripheral blood, may have predictive value in future clinical trials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondria are responsible for producing the vast majority of cellular ATP, and are therefore critical to organismal health [1]. They contain thir own genomes (mtDNA) which encode 13 proteins that are all subunits of the mitochondrial respiratory chain (MRC) and are essential for oxidative phosphorylation [2]. mtDNA is present in multiple copies per cell, usually between 103 and 104 , though this number is reduced during certain developmental stages [3, 4]. The health of the mitochondrial genome is also important to the health of the organism, as mutations in mtDNA lead to human diseases that collectively affect approximately 1 in 4000 people [5, 6]. mtDNA is more susceptible than nuclear DNA (nucDNA) to damage by many environmental pollutants, for reasons including the absence of Nucleotide Excision Repair (NER) in the mitochondria [7]. NER is a highly functionally conserved DNA repair pathway that removes bulky, helix distorting lesions such as those caused by ultraviolet C (UVC) radiation and also many environmental toxicants, including benzo[a]pyrene (BaP) [8]. While these lesions cannot be repaired, they are slowly removed through a process that involves mitochondrial dynamics and autophagy [9, 10]. However, when present during development in C. elegans, this damage reduces mtDNA copy number and ATP levels [11]. We hypothesize that this damage, when present during development, will result in mitochondrial dysfunction and increase the potential for adverse outcomes later in life.

To test this hypothesis, 1st larval stage (L1) C. elegans are exposed to 3 doses of 7.5J/m2 ultraviolet C radiation 24 hours apart, leading to the accumulation of mtDNA damage [9, 11]. After exposure, many mitochondrial endpoints are assessed at multiple time points later in life. mtDNA and nucDNA damage levels and genome copy numbers are measured via QPCR and real-time PCR , respectively, every 2 day for 10 days. Steady state ATP levels are measured via luciferase expressing reporter strains and traditional ATP extraction methods. Oxygen consumption is measured using a Seahorse XFe24 extra cellular flux analyzer. Gene expression changes are measured via real time PCR and targeted metabolomics via LC-MS are used to investigate changes in organic acid, amino acid and acyl-carnitine levels. Lastly, nematode developmental delay is assessed as growth, and measured via imaging and COPAS biosort.

I have found that despite being removed, UVC induced mtDNA damage during development leads to persistent deficits in energy production later in life. mtDNA copy number is permanently reduced, as are ATP levels, though oxygen consumption is increased, indicating inefficient or uncoupled respiration. Metabolomic data and mutant sensitivity indicate a role for NADPH and oxidative stress in these results, and exposed nematodes are more sensitive to the mitochondrial poison rotenone later in life. These results fit with the developmental origin of health and disease hypothesis, and show the potential for environmental exposures to have lasting effects on mitochondrial function.

Lastly, we are currently working to investigate the potential for irreparable mtDNA lesions to drive mutagenesis in mtDNA. Mutations in mtDNA lead to a wide range of diseases, yet we currently do not understand the environmental component of what causes them. In vitro evidence suggests that UVC induced thymine dimers can be mutagenic [12]. We are using duplex sequencing of C. elegans mtDNA to determine mutation rates in nematodes exposed to our serial UVC protocol. Furthermore, by including mutant strains deficient in mitochondrial fission and mitophagy, we hope to determine if deficiencies in these processes will further increase mtDNA mutation rates, as they are implicated in human diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of diabetes mellitus on male reproductive health have not been clearly defined. A previous publication from this group reported significantly higher levels of nuclear DNA fragmentation and mitochondrial DNA deletions in spermatozoa from men with type 1 diabetes. This study compared semen profiles, sperm DNA fragmentation and levels of oxidative DNA modification in spermatozoa of diabetic and non-diabetic men. Semen samples from 12 non-diabetic, fertile men and 11 type 1 diabetics were obtained and subjected to conventional light microscopic semen analysis. Nuclear DNA fragmentation was assessed using an alkaline Comet assay and concentrations of 7,8-dihydro-8-oxo-2-deoxyguanosine (8-OHdG), an oxidative adduct of the purine guanosine, were assessed by high-performance liquid chromatography. Conventional semen profiles were similar in both groups, whilst spermatozoa from type 1 diabetics showed significantly higher levels of DNA fragmentation (44% versus 27%; P < 0.05) and concentrations of 8-OHdG (3.6 versus 2.0 molecules of 8-OHdG per 105 molecules of deoxyguanosine; P < 0.05). Furthermore, a positive correlation was observed between DNA fragmentation and concentrations of 8-OHdG per 105 molecules of deoxyguanosine (rs = 0.7, P < 0.05). The genomic damage evident in spermatozoa of type 1 diabetics may have important implications for their fertility and the outcome of pregnancies fathered by these individuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isoflavones are plant compounds, proposed to have health benefits in a variety of human diseases, including coronary heart disease and endocrine-responsive cancers. Their physiological effects include possible antioxidant activity, therefore suggesting a role for isoflavones in the prevention of male infertility. The aim of this study was to test the antioxidant effects of the isoflavones genistein and equol on sperm DNA integrity, assessed in vitro after hydrogen peroxide-mediated damage, using the cornet assay. Pre-treatment with genistein or equol at doses of 0.01-100 mumol/l significantly protected sperm DNA against oxidative damage. Both ascorbic acid (10-600 mumol/l) and alpha-tocopherol (1-100 mumol/l) also protected. Compared with ascorbic acid and alpha-tocopherol, added at physiological concentrations, genistein was the most potent antioxidant, followed by equol, ascorbic acid, and alpha-tocopherol. Genistein and equol added in combination were more protective than when added singly. Based on these preliminary data, which are similar to those observed previously in lymphocytes, these compounds may have a role to play in antioxidant protection against male infertility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Sperm DNA damage is a useful biomarker for male infertility diagnosis and prediction of assisted reproduction outcomes.
It is associated with reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage
and childhood diseases. This review provides a synopsis of the most recent studies from each of the authors, all of whom have major
track records in the field of sperm DNA damage in the clinical setting. It explores current laboratory tests and the accumulating body
of knowledge concerning the relationship between sperm DNA damage and clinical outcomes. The paper proceeds to discuss the
strengths, weaknesses and clinical applicability of current sperm DNA tests. Next, the biological significance of DNA damage in
the male germ line is considered. Finally, as sperm DNA damage is often the result of oxidative stress in the male reproductive tract,
the potential contribution of antioxidant therapy in the clinical management of this condition is discussed. DNA damage in human spermatozoa is an important attribute of semen quality. It should be part of the clinical work up and properly controlled trials
addressing the effectiveness of antioxidant therapy should be undertaken as a matter of urgency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of cancer in humans and animals is a multistep process. The complex series of cellular and molecular changes participating in cancer development are mediated by a diversity of endogenous and exogenous stimuli. One type of endogenous damage is that arising from intermediates of oxygen (dioxygen) reduction - oxygen-free radicals (OFR), which attacks not only the bases but also the deoxyribosyl backbone of DNA. Thanks to improvements in analytical techniques, a major achievement in the understanding of carcinogenesis in the past two decades has been the identification and quantification of various adducts of OFR with DNA. OFR are also known to attack other cellular components such as lipids, leaving behind reactive species that in turn can couple to DNA bases. Endogenous DNA lesions are genotoxic and induce mutations. The most extensively studied lesion is the formation of 8-OH-dG. This lesion is important because it is relatively easily formed and is mutagenic and therefore is a potential biomarker of carcinogenesis. Mutations that may arise from formation of 8-OH-dG involve GC. TA transversions. In view of these findings, OFR are considered as an important class of carcinogens. The effect of OFR is balanced by the antioxidant action of non-enzymatic antioxidants as well as antioxidant enzymes. Non-enzymatic antioxidants involve vitamin C, vitamin E, carotenoids (CAR), selenium and others. However, under certain conditions, some antioxidants can also exhibit a pro-oxidant mechanism of action. For example, beta-carotene at high concentration and with increased partial pressure of dioxygen is known to behave as a pro-oxidant. Some concerns have also been raised over the potentially deleterious transition metal ion-mediated (iron, copper) pro-oxidant effect of vitamin C. Clinical studies mapping the effect of preventive antioxidants have shown surprisingly little or no effect on cancer incidence. The epidemiological trials together with in vitro experiments suggest that the optimal approach is to reduce endogenous and exogenous sources of oxidative stress, rather than increase intake of anti-oxidants. In this review, we highlight some major achievements in the study of DNA damage caused by OFR and the role in carcinogenesis played by oxidatively damaged DNA. The protective effect of antioxidants against free radicals is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Cruciferous vegetable (CV) consumption is associated with a reduced risk of several cancers in epidemiologic studies. Objective: The aim of this study was to determine the effects of watercress (a CV) supplementation on biomarkers related to cancer risk in healthy adults. Design: A single-blind, randomized, crossover study was conducted in 30 men and 30 women (30 smokers and 30 nonsmokers) with a mean age of 33 y (range: 19-55 y). The subjects were fed 85 g raw watercress daily for 8 wk in addition to their habitual diet. The effect of supplementation was measured on a range of endpoints, including DNA damage in lymphocytes (with the comet assay), activity of detoxifying enzymes (glutathione peroxidase and superoxide dismutase) in erythrocytes, plasma antioxidants (retinol, ascorbic acid, a-tocopherol, lutein, and beta-carotene), plasma total antioxidant status with the use of the ferric reducing ability of plasma assay, and plasma lipid profile. Results: Watercress supplementation (active compared with control phase) was associated with reductions in basal DNA damage (by 17%; P = 0.03), in basal plus oxidative purine DNA damage (by 23.9%; P = 0.002), and in basal DNA damage in response to ex vivo hydrogen peroxide challenge (by 9.4%; P = 0.07). Beneficial changes seen after watercress intervention were greater and more significant in smokers than in nonsmokers. Plasma lutein and P-carotene increased significantly by 100% and 33% (P < 0.001), respectively, after watercress supplementation. Conclusion: The results support the theory that consumption of watercress can be linked to a reduced risk of cancer via decreased damage to DNA and possible modulation of antioxidant status by increasing carotenoid concentrations.