960 resultados para OVER-EXPRESSION


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by T cell-mediated destruction of pancreatic beta cells, resulting in insulin deficiency and hyperglycaemia. Recent studies have described that apoptosis impairment during central and peripheral tolerance is involved in T1D pathogenesis. In this study, the apoptosis-related gene expression in T1D patients was evaluated before and after treatment with high-dose immunosuppression followed by autologous haematopoietic stem cell transplantation (HDI-AHSCT). We also correlated gene expression results with clinical response to HDI-AHSCT. We observed a decreased expression of bad, bax and fasL pro-apoptotic genes and an increased expression of a1, bcl-xL and cIAP-2 anti-apoptotic genes in patients' peripheral blood mononuclear cells (PBMCs) compared to controls. After HDI-AHSCT, we found an up-regulation of fas and fasL and a down-regulation of anti-apoptotic bcl-xL genes expression in post-HDI-AHSCT periods compared to pre-transplantation. Additionally, the levels of bad, bax, bok, fasL, bcl-xL and cIAP-1 genes expression were found similar to controls 2 years after HDI-AHSCT. Furthermore, over-expression of pro-apoptotic noxa at 540 days post-HDI-AHSCT correlated positively with insulin-free patients and conversely with glutamic acid decarboxylase autoantibodies (GAD65) autoantibody levels. Taken together, the results suggest that apoptosis-related genes deregulation in patients' PBMCs might be involved in breakdown of immune tolerance and consequently contribute to T1D pathogenesis. Furthermore, HDI-AHSCT modulated the expression of some apoptotic genes towards the levels similar to controls. Possibly, the expression of these apoptotic molecules could be applied as biomarkers of clinical remission of T1D patients treated with HDI-AHSCT therapy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: We identified miRNA expression profiles in urothelial carcinoma that are associated with grade, stage, and recurrence-free and disease specific survival. Materials and Methods: The expression of 14 miRNAs was evaluated by quantitative reverse transcriptase-polymerase chain reaction in surgical specimens from 30 patients with low grade, noninvasive (pTa) and 30 with high grade, invasive (pT2-3) urothelial carcinoma. Controls were normal bladder tissue from 5 patients who underwent surgical treatment for benign prostatic hyperplasia. Endogenous controls were RNU-43 and RNU-48. miRNA profiles were compared and Kaplan-Meier curves were constructed to analyze disease-free and disease specific survival. Results: miR-100 was under expressed in 100% of low grade pTa specimens (p <0.001) and miR-10a was over expressed in 73.3% (p <0.001). miR-21 and miR-205 were over expressed in high grade pT2-3 disease (p = 0.02 and <0.001, respectively). The other miRNAs were present at levels similar to those of normal bladder tissue or under expressed in each tumor group. miR-21 over expression (greater than 1.08) was related to shorter disease-free survival in patients with low grade pTa urothelial carcinoma. Higher miR-10a levels (greater than 2.30) were associated with shorter disease-free and disease specific survival in patients with high grade pT2-3 urothelial carcinoma. Conclusions: Four miRNAs were differentially expressed in the 2 urothelial carcinoma groups. miR-100 and miR-10a showed under expression and over expression, respectively, in low grade pTa tumors. miR-21 and miR-205 were over expressed in pT2-3 disease. In addition, miR-10a and miR-21 over expression was associated with shorter disease-free and disease specific survival. miRNAs could be incorporated into the urothelial carcinoma molecular pathway. These miRNAs could also serve as new diagnostic or prognostic markers and new target drugs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract Background Current evidence implicates aberrant microRNA expression patterns in human malignancies; measurement of microRNA expression may have diagnostic and prognostic applications. Roles for microRNAs in head and neck squamous cell carcinomas (HNSCC) are largely unknown. HNSCC, a smoking-related cancer, is one of the most common malignancies worldwide but reliable diagnostic and prognostic markers have not been discovered so far. Some studies have evaluated the potential use of microRNA as biomarkers with clinical application in HNSCC. Methods MicroRNA expression profile of oral squamous cell carcinoma samples was determined by means of DNA microarrays. We also performed gain-of-function assays for two differentially expressed microRNA using two squamous cell carcinoma cell lines and normal oral keratinocytes. The effect of the over-expression of these molecules was evaluated by means of global gene expression profiling and cell proliferation assessment. Results Altered microRNA expression was detected for a total of 72 microRNAs. Among these we found well studied molecules, such as the miR-17-92 cluster, comprising potent oncogenic microRNA, and miR-34, recently found to interact with p53. HOX-cluster embedded miR-196a/b and miR-10b were up- and down-regulated, respectively, in tumor samples. Since validated HOX gene targets for these microRNAs are not consistently deregulated in HNSCC, we performed gain-of-function experiments, in an attempt to outline their possible role. Our results suggest that both molecules interfere in cell proliferation through distinct processes, possibly targeting a small set of genes involved in cell cycle progression. Conclusions Functional data on miRNAs in HNSCC is still scarce. Our data corroborate current literature and brings new insights into the role of microRNAs in HNSCC. We also show that miR-196a and miR-10b, not previously associated with HNSCC, may play an oncogenic role in this disease through the deregulation of cell proliferation. The study of microRNA alterations in HNSCC is an essential step to the mechanistic understanding of tumor formation and could lead to the discovery of clinically relevant biomarkers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Es ist bekannt, dass die Überexpression eines einzigen Onkogens im Tumorgewebe einen maligneren Phänotyp zur Folge haben kann. Ein Beispiel hierfür ist die Rezeptortyrosinkinase HER-2. Besonders in Mamma- und Ovarialkarzinomen tritt häufig eine HER-2 Überexpression auf, die mit einer schlechteren Prognose für die Patientinnen einhergeht. Die HER-2 blockierende Therapie mit Trastuzumab (Herceptin®) konnte zu einer signifikanten Verbesserung der Überlebenszeit bei Patientinnen mit metastasierendem Mammakarzinom führen. Es ist deshalb von großem Interesse herauszufinden, ob ein Tumor durch gezielte Blockade eines bestimmten Onkogens sein tumorigenes Potential verlieren kann, und dadurch das Tumorwachstum zumindest zeitweise unterbunden wird. Die Frage ist also, ob ein Tumor reversibel sein kann, wenn die Expression seiner Onkogene blockiert wird. Frühere Arbeiten meiner Arbeitsgruppe haben gezeigt, dass Tumore, die konditional humanes HER-2 exprimierten, nach Ausschalten von HER-2 tatsächlich in Remission gingen, d.h. reversibel waren. Tumorgrößenabhängig konnte sogar eine vollständige Tumorremission beobachtet werden. Die vorliegende Arbeit soll nun helfen, die beobachtete Remission nach Ausschalten von HER-2 besser verstehen zu können. Von Interesse sind dabei vor allem die molekularen Mechanismen, die in dem Tumor nach Ausschalten der HER-2 Expression ablaufen. Die konditionale Expression von HER-2 wurde mit Hilfe des TET-OFF Systems in NIH3T3 Mausfibroblasten erreicht. Mit dieser Technik wurde ein Maustumormodell etabliert, das ermöglichte, die Veränderungen in den Tumoren nach Ausschalten von HER-2 zu untersuchen. Ein besonderes Augenmerk wurde dabei auf zwei der durch HER-2 vermittelten Signalwege gerichtet, den Ras-MAP Kinase Signalweg und die Aktivierung von Akt über die Phosphoinositol-3 Kinase. Beide wurden nach Ausschalten der HER-2 Expression deaktiviert. Um herausfinden zu können, welcher der beiden Wege eine wichtigere Rolle bei der Tumorremission spielt, wurden in der vorliegenden Arbeit zwei weitere Maustumormodelle zur konditionalen Expression von humanem H-Ras bzw. einer Form des humanen c-Raf-1 (BXB-Raf1) etabliert. Die Modelle funktionierten auf dieselbe Weise wie das HER-2 Maustumormodell und es wurden auch dieselben Faktoren untersucht. Ras und Raf sind Mitglieder des Ras-MAP Kinase Signalweges. Raf ist aber im Gegensatz zu HER-2 und Ras nicht in der Lage, Akt zu aktivieren. Durch Vergleich der Ergebnisse der drei Maustumormodelle war es deshalb möglich zu differenzieren, ob Einflüsse auf die Tumorentwicklung über denn Ras-MAP Kinase oder den PI3K/Akt Signalweg vermittelt wurden. Auch Ausschalten von H-Ras oder BXB-Raf1 führte zu einer raschen Tumorremission. Damit wurde erneut die Frage nach der Reversibilität eines Tumors beantwortet. Ob die Remission auf einer Induktion von Apoptose beruhte, konnte nicht endgültig geklärt werden, da es zwar nach Ausschalten von HER-2 zu einer Erhöhung der Apoptoserate kam, nicht jedoch nach Ausschalten von H-Ras oder BXB-Raf1. Aufgrund der vorhandenen Ergebnisse wird vermutet, dass es zu einer Störung des Gleichgewichtes zwischen proliferationsfördernden und apoptotischen Faktoren nach Ausschalten der Onkogene kam. Die in den Tumoren vorhandene Spontanapoptose könnte dann ausreichen, den Prozess der Tumorremission auszulösen. Die Untersuchungen haben gezeigt, dass ERK bzw. der Ras-MAP Kinase Signalweg die bedeutendere Rolle bei der Tumorremission spielte. Zum einen wurde dies belegt durch die Beobachtung, dass die Tumorverläufe von HER-2 und BXB-Raf1 nahezu identisch waren. Zum anderen kam es in allen drei Modellen zu einer Dephosphorylierung von ERK, die der Tumorremission vorausging. Akt schien dagegen keine Rolle zu spielen, da das Ausschalten der HER-2, H-Ras oder BXB-Raf1 Expression zu keiner einheitlichen Veränderung des Posphorylierungsgrades von Akt führte. Demnach ist die Blockade des Ras-MAP Kinase Signalweges, der hauptsächlich proliferationsfördernde Eigenschaften besitzt, wichtiger für die Tumorremission als die Blockade des PI3K/Akt Signalweges, der hauptsächlich anti-apoptotische Eigenschaften vermittelt.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Apple proliferation (AP) disease is the most important graft-transmissible and vector-borne disease of apple in Europe. ‘Candidatus Phytoplasma mali’ (Ca. P. mali) is the causal agent of AP. Apple (Malus x domestica) and other Malus species are the only known woody hosts. In European apple orchards, the cultivars are mainly grafted on one rootstock, M. x domestica cv. M9. M9 like all other M. x domestica cultivars is susceptible to ‘Ca. P. mali’. Resistance to AP was found in the wild genotype Malus sieboldii (MS) and in MS-derived hybrids but they were characterised by poor agronomic value. The breeding of a new rootstock carrying the resistant and the agronomic traits was the major aim of a project of which this work is a part. The objective was to shed light into the unknown resistance mechanism. The plant-phytoplasma interaction was studied by analysing differences between the ‘Ca. P. mali’-resistant and -susceptible genotypes related to constitutively expressed genes or to induced genes during infection. The cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) technique was employed in both approaches. Differences related to constitutively expressed genes were identified between two ‘Ca. P. mali’-resistant hybrid genotypes (4551 and H0909) and the ‘Ca. P. mali’-susceptible M9. 232 cDNA-AFLP bands present in the two resistant genotypes but absent in the susceptible one were isolated but several different products associated to each band were found. Therefore, two different macroarray hybridisation experiments were performed with the cDNA-AFLP fragments yielding 40 sequences encoding for genes of unknown function or a wide array of functions including plant defence. In the second approach, individuation and analysis of the induced genes was carried out exploiting an in vitro system in which healthy and ‘Ca. P. mali’-infected micropropagated plants were maintained under controlled conditions. Infection trials using in vitro grafting of ‘Ca. P. mali’ showed that the resistance phenotype could be reproduced in this system. In addition, ex vitro plants were generated as an independent control of the genes differentially expressed in the in vitro plants. The cDNA-AFLP analysis in in vitro plants yielded 63 bands characterised by over-expression in the infected state of both the H0909 and MS genotypes. The major part (37 %) of the associated sequences showed homology with products of unknown function. The other genes were involved in plant defence, energy transport/oxidative stress response, protein metabolism and cellular growth. Real-time qPCR analysis was employed to validate the differential expression of the genes individuated in the cDNA-AFLP analysis. Since no internal controls were available for the study of the gene expression in Malus, an analysis on housekeeping genes was performed. The most stably expressed genes were the elongation factor-1 α (EF1) and the eukaryotic translation initiation factor 4-A (eIF4A). Twelve out of 20 genes investigated through qPCR were significantly differentially expressed in at least one genotype either in in vitro plants or in ex vitro plants. Overall, about 20% of the genes confirmed their cDNA-AFLP expression pattern in M. sieboldii or H0909. On the contrary, 30 % of the genes showed down-regulation or were not differentially expressed. For the remaining 50 % of the genes a contrasting behaviour was observed. The qPCR data could be interpreted as follows: the phytoplasma infection unbalance photosynthetic activity and photorespiration down-regulating genes involved in photosynthesis and in the electron transfer chain. As result, and in contrast to M. x domestica genotypes, an up-regulation of genes of the general response against pathogens was found in MS. These genes involved the pathway of H2O2 and the production of secondary metabolites leading to the hypothesis that a response based on the accumulation of H2O2 in MS would be at the base of its resistance. This resembles a phenomenon known as “recovery” where the spontaneous remission of the symptoms is observed in old susceptible plants but occurring in a stochastic way while the resistance in MS is an inducible but stable feature. As additional product of this work three cDNA-AFLP-derived markers were developed which showed independent distribution among the seedlings of two breeding progenies and were associated to a genomic region characteristic of MS. These markers will contribute to the development of molecular markers for the resistance as well as to map the resistance on the Malus genome.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Transforming growth factor-beta2 (TGF-beta2) stimulates the expression of pro-fibrotic connective tissue growth factor (CTGF) during the course of renal disease. Because sphingosine kinase-1 (SK-1) activity is also upregulated by TGF-beta, we studied its effect on CTGF expression and on the development of renal fibrosis. When TGF-beta2 was added to an immortalized human podocyte cell line we found that it activated the promoter of SK-1, resulting in upregulation of its mRNA and protein expression. Further, depletion of SK-1 by small interfering RNA or its pharmacological inhibition led to accelerated CTGF expression in the podocytes. Over-expression of SK-1 reduced CTGF induction, an effect mediated by intracellular sphingosine-1-phosphate. In vivo, SK-1 expression was also increased in the podocytes of kidney sections of patients with diabetic nephropathy when compared to normal sections of kidney obtained from patients with renal cancer. Similarly, in a mouse model of streptozotocin-induced diabetic nephropathy, SK-1 and CTGF were upregulated in podocytes. In SK-1 deficient mice, exacerbation of disease was detected by increased albuminuria and CTGF expression when compared to wild-type mice. Thus, SK-1 activity has a protective role in the fibrotic process and its deletion or inhibition aggravates fibrotic disease.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background The identification of additional prognostic markers to improve risk stratification and to avoid overtreatment is one of the most urgent clinical needs in prostate cancer (PCa). MicroRNAs, being important regulators of gene expression, are promising biomarkers in various cancer entities, though the impact as prognostic predictors in PCa is poorly understood. The aim of this study was to identify specific miRNAs as potential prognostic markers in high-risk PCa and to validate their clinical impact. Methodology and Principal Findings We performed miRNA-microarray analysis in a high-risk PCa study group selected by their clinical outcome (clinical progression free survival (CPFS) vs. clinical failure (CF)). We identified seven candidate miRNAs (let-7a/b/c, miR-515-3p/5p, -181b, -146b, and -361) that showed differential expression between both groups. Further qRT-PCR analysis revealed down-regulation of members of the let-7 family in the majority of a large, well-characterized high-risk PCa cohort (n = 98). Expression of let-7a/b/and -c was correlated to clinical outcome parameters of this group. While let-7a showed no association or correlation with clinical relevant data, let-7b and let-7c were associated with CF in PCa patients and functioned partially as independent prognostic marker. Validation of the data using an independent high-risk study cohort revealed that let-7b, but not let-7c, has impact as an independent prognostic marker for BCR and CF. Furthermore, we identified HMGA1, a non-histone protein, as a new target of let-7b and found correlation of let-7b down-regulation with HMGA1 over-expression in primary PCa samples. Conclusion Our findings define a distinct miRNA expression profile in PCa cases with early CF and identified let-7b as prognostic biomarker in high-risk PCa. This study highlights the importance of let-7b as tumor suppressor miRNA in high-risk PCa and presents a basis to improve individual therapy for high-risk PCa patients.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Squamous cell carcinoma of head and neck (SCCHN) is the tenth most common cancer in the world. Unfortunately, the survival of patients with SCCHN has not improved in the last 40 years. Therefore new targets for therapy are needed, and to this end we are studying signaling pathways activated by IL-6 which we have found stimulates cell migration and soft agar growth in SCCHN. Our data show that IL-6 increases TWIST expression in a transcription-independent mechanism in many SCCHN cell lines. Further investigation reveals TWIST can be phosphorylated upon IL-6 treatment. By computation prediction (http://scansite.mit.edu/motifscan_seq.phtml ), we found that TWIST has a putative phosphorylation site for casein kinase 2 (CK2) suggesting that this kinase could serve as a link between IL-6 stimulation and Twist stability. To test this hypothesis, we used a CK2 inhibitor and shRNA to CK2 and found that these interventions inhibited IL-6 stimulation of TWIST stability. In addition, mutation of the putative CK2 phosphorylation site (S18/S20A) in TWIST decreased the amount of phospho-ATP incorporated by TWIST in an in vitro kinase assay, and altered TWIST stability. In Boyd chamber migration assay and wound-healing assay, the CK2 inhibitor, DMAT, was found to decrease the motility of IL-6 stimulated SCCHN cells and over expression of either a wild-type or the hyperphosphorylated mimicking mutant S18/20D –Twist rather than the hypo-phosphorylated mimicking mutant S18/20A-Twist can promote SCCHN cell motility.To our knowledge, this is the first report to identify the importance of IL-6 stimulated CK2 phosphorylation of TWIST in SCCHN. As CK2 inhibitors are currently under phase I clinical trials, our findings indicate that CK2 may be a viable therapeutic target in SCCHN. Therefore, further pre-clinical studies of this inhibitor are underway.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objectives. Triple Negative Breast Cancer (TNBC) lack expression of estrogen receptors (ER), progesterone receptors (PR), and absence of Her2 gene amplification. Current literature has identified TNBC and over-expression of cyclo-oxygenase-2 (COX-2) protein in primary breast cancer to be independent markers of poor prognosis in terms of overall and distant disease free survival. The purpose of this study was to compare COX-2 over-expression in TNBC patients to those patients who expressed one or more of the three tumor markers (i.e. ER, and/or PR, and/or Her2).^ Methods. Using a secondary data analysis, a cross-sectional design was implemented to examine the association of interest. Data collected from two ongoing protocols titled "LAB04-0657: a model for COX-2 mediated bone metastasis (Specific aim 3)" and "LAB04-0698: correlation of circulating tumor cells and COX-2 expression in primary breast cancer metastasis" was used for analysis. A sample of 125 female patients was analyzed using Chi-square tests and logistic regression models. ^ Results. COX-2 over-expression was present in 33% (41/125) and 28% (35/124) patients were identified as having TNBC. TNBC status was associated with elevated COX-2 expression (OR= 3.34; 95% CI= 1.40–8.22) and high tumor grade (OR= 4.09; 95% CI= 1.58–10.82). In a multivariable analysis, TNBC status was an important predictor of COX-2 expression after adjusting for age, menopausal status, BMI, and lymph node status (OR= 3.31; 95% CI: 1.26–8.67; p=0.01).^ Conclusion. TNBC is associated with COX-2 expression—a known marker of poor prognosis in patients with operable breast cancer. Replication of these results in a study with a larger sample size, or a future randomized clinical trial demonstrating an improved prognosis with COX-2 suppression in these patients would support this hypothesis.^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background. Assessment of estrogen receptor (ER) expression has inconsistent utility as a prognostic marker in epithelial ovarian carcinoma. In breast and endometrial cancers, the use of estrogen-induced gene panels, rather than ER expression alone, has shown improved prognostic capability. Specifically, over-expression of estrogen-induced genes in these tumors is associated with a better prognosis and signifies estrogen sensitivity that can be exploited with hormone antagonizing agents. It was therefore hypothesized that estrogen-induced gene expression in ovarian carcinoma would successfully predict outcomes and differentiate between tumors of varying estrogen sensitivities. Methods. Two hundred nineteen (219) patients with ovarian cancer who underwent surgery at M. D. Anderson between 2004 and 2007 were identified. Of these, eighty-three (83) patients were selected for inclusion because they had advanced stage, high-grade serous carcinoma of the ovary or peritoneum, had not received neoadjuvant chemotherapy, and had readily available frozen tissue for study. All patients had also received adjuvant treatment with platinum and taxane agents. The expression of seven genes known to be induced by estrogen in the female reproductive tract (EIG121, sFRP1, sFRP4, RALDH2, PR, IGF-1, and ER) was measured using qRT-PCR. Unsupervised cluster analyses of multiple gene permutations were used to categorize patients as high or low estrogen-induced gene expressors. QPCR gene expression results were then compared to ER and PR immunohistochemical (IHC) expression. Cox proportional hazards models were used to evaluate the effects of both individual genes and selected gene clusters on patient survival. Results. Median follow-up time was 38.7 months (range 1-68 months). In a multivariate model, overall survival was predicted by sFRP1 expression (HR 1.10 [1.02-1.19], p=0.01) and EIG121 expression (HR 1.28 [1.10-1.49], p<0.01). A cluster defined by EIG121 and ER was further examined because that combination appeared to reasonably segregate tumors into distinct groups of high and low estrogen-induced gene expressors. Shorter overall survival was associated with high estrogen-induced gene expressors (HR 2.84 [1.11-7.30], p=0.03), even after adjustment for race, age, body mass index, and residual disease at debulking. No difference in IHC ER or PR expression was noted between gene clusters. Conclusion. In sharp contrast to breast and endometrial cancers, high estrogen-induced gene expression predicts shorter overall survival in patients with high-grade serous ovarian carcinoma. An estrogen-induced gene biomarker panel may have utility as prognostic indicator and may be useful to guide management with estrogen antagonists in this population.^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Several studies indicate that interleukin-6 (IL-6) production is elevated in renal cell carcinoma (RCC) cells, and that IL-6 can serve as an autocrine growth factor in this malignancy. Wild type (wt) p53 represses transcription from the IL-6 promoter in an inducible system. The objective of this study was to determine the role of p53 in regulating constitutive IL-6 production in RCC cells. RCC cell lines containing mutant (mut) p53 produced significantly higher levels of IL-6 than those containing wt p53 (p < 0.05). Transfection of wt p53 into RCC cell lines resulted in significant repression of IL-6 promoter CAT activity p < 0.05). Mutant p53 was less effective at repressing IL-6 promoter activity in ACHN cells, and actually enhanced IL-6 promoter activity in the A498 cell line. A498 cells stably transfected with mutant p53 produced significantly higher levels of IL-6 than A498 cells transfected with an empty expression vector (p < 0.05). Electrophoretic mobility shift assay showed a significant decrease in binding of C/EBP, CREB, and NF-kB transcription factors to the IL-6 promoter in A498 cells transfected with wt p53. Mut p53 was unable to inhibit transcription factor binding to the IL-6 promoter in these cells. Mutant p53-expressing UOK 121LN cells showed decreased binding of C/EBP and CREB, but not NF-kB, following wt p53 transfection. These data suggest that (i) mutation of p53 contributes to the over-expression of IL-6 in RCC; and (ii) wt p53 represses IL-6 expression at least in part by interfering with the binding of C/EBP, CREB, and in some cases, NF-kB transcription factors to the IL-6 promoter. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Endo-β-mannanases (MAN; EC. 3.2.1.78) catalyze the cleavage of β1[RIGHTWARDS ARROW]4 bonds in mannan polymers and have been associated with the process of weakening the tissues surrounding the embryo during seed germination. In germinating Arabidopsis thaliana seeds, the most highly expressed MAN gene is AtMAN7 and its transcripts are restricted to the micropylar endosperm and to the radicle tip just before radicle emergence. Mutants with a T-DNA insertion in AtMAN7 have a slower germination than the wild type. To gain insight into the transcriptional regulation of the AtMAN7 gene, a bioinformatic search for conserved non-coding cis-elements (phylogenetic shadowing) within the Brassicaceae MAN7 gene promoters has been done, and these conserved motifs have been used as bait to look for their interacting transcription factors (TFs), using as a prey an arrayed yeast library from A. thaliana. The basic-leucine zipper TF AtbZIP44, but not the closely related AtbZIP11, has thus been identified and its transcriptional activation upon AtMAN7 has been validated at the molecular level. In the knock-out lines of AtbZIP44, not only is the expression of the AtMAN7 gene drastically reduced, but these mutants have a significantly slower germination than the wild type, being affected in the two phases of the germination process, both in the rupture of the seed coat and in the breakage of the micropylar endosperm cell walls. In the over-expression lines the opposite phenotype is observed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have recently shown that VEGF functions as a survival factor for newly formed vessels during developmental neovascularization, but is not required for maintenance of mature vessels. Reasoning that expanding tumors contain a significant fraction of newly formed and remodeling vessels, we examined whether abrupt withdrawal of VEGF will result in regression of preformed tumor vessels. Using a tetracycline-regulated VEGF expression system in xenografted C6 glioma cells, we showed that shutting off VEGF production leads to detachment of endothelial cells from the walls of preformed vessels and their subsequent death by apoptosis. Vascular collapse then leads to hemorrhages and extensive tumor necrosis. These results suggest that enforced withdrawal of vascular survival factors can be applied to target preformed tumor vasculature in established tumors. The system was also used to examine phenotypes resulting from over-expression of VEGF. When expression of the transfected VEGF cDNA was continuously “on,” tumors became hyper-vascularized with abnormally large vessels, presumably arising from excessive fusions. Tumors were significantly less necrotic, suggesting that necrosis in these tumors is the result of insufficient angiogenesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tissue factor (TF) is the cellular receptor for an activated form of clotting factor VII (VIIa) and the binding of factor VII(a) to TF initiates the coagulation cascade. Sequence and structural patterns extracted from a global alignment of TF confers homology with interferon receptors of the cytokine receptor super family. Several recent studies suggested that TF could function as a genuine signal transducing receptor. However, it is unknown which biological function(s) of cells are altered upon the ligand, VIIa, binding to TF. In the present study, we examined the effect of VIIa binding to cell surface TF on cellular gene expression in fibroblasts. Differential mRNA display PCR technique was used to identify transcriptional changes in fibroblasts upon VIIa binding to TF. The display showed that VIIa binding to TF either up or down-regulated several mRNA species. The differential expression of one such transcript, VIIa-induced up-regulation, was confirmed by Northern blot analysis. Isolation of a full-length cDNA corresponding to the differentially expressed transcript revealed that VIIa-up-regulated gene was poly(A) polymerase. Northern blot analysis of various carcinomas and normal human tissues revealed an over expression of PAP in cancer tissues. Enhanced expression of PAP upon VIIa binding to tumor cell TF may potentially play an important role in tumor metastasis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Arabidopsis HY4 gene, required for blue-light-induced inhibition of hypocotyl elongation, encodes a 75-kDa flavoprotein (CRY1) with characteristics of a blue-light photoreceptor. To investigate the mechanism by which this photoreceptor mediates blue-light responses in vivo, we have expressed the Arabidopsis HY4 gene in transgenic tobacco. The transgenic plants exhibited a short-hypocotyl phenotype under blue, UV-A, and green light, whereas they showed no difference from the wild-type plant under red/far-red light or in the dark. This phenotype was found to cosegregate with overexpression of the HY4 transgene and to be fluence dependent. We concluded that the short-hypocotyl phenotype of transgenic tobacco plants was due to hypersensitivity to blue, UV-A, and green light, resulting from over-expression of the photoreceptor. These observations are consistent with the broad action spectrum for responses mediated by this cryptochrome in Arabidopsis and indicate that the machinery for signal, transduction required by the CRY1 protein is conserved among different plant species. Furthermore, the level of these photoresponses is seen to be determined by the cellular concentration of this photoreceptor.