998 resultados para ORGANIC NETWORKS
Resumo:
Hepatitis C virus (HCV) infects 170 million people worldwide, and is a major public health problem in Brazil, where over 1% of the population may be infected and where multiple viral genotypes co-circulate. Chronically infected individuals are both the source of transmission to others and are at risk for HCV-related diseases, such as liver cancer and cirrhosis. Before the adoption of anti-HCV control measures in blood banks, this virus was mainly transmitted via blood transfusion. Today, needle sharing among injecting drug users is the most common form of HCV transmission. Of particular importance is that HCV prevalence is growing in non-risk groups. Since there is no vaccine against HCV, it is important to determine the factors that control viral transmission in order to develop more efficient control measures. However, despite the health costs associated with HCV, the factors that determine the spread of virus at the epidemiological scale are often poorly understood. Here, we sequenced partial NS5b gene sequences sampled from blood samples collected from 591 patients in Sao Paulo state, Brazil. We show that different viral genotypes entered Sao Paulo at different times, grew at different rates, and are associated with different age groups and risk behaviors. In particular, subtype 1b is older and grew more slowly than subtypes 1a and 3a, and is associated with multiple age classes. In contrast, subtypes 1a and 3b are associated with younger people infected more recently, possibly with higher rates of sexual transmission. The transmission dynamics of HCV in Sao Paulo therefore vary by subtype and are determined by a combination of age, risk exposure and underlying social network. We conclude that social factors may play a key role in determining the rate and pattern of HCV spread, and should influence future intervention policies.
Resumo:
A network can be analyzed at different topological scales, ranging from single nodes to motifs, communities, up to the complete structure. We propose a novel approach which extends from single nodes to the whole network level by considering non-overlapping subgraphs (i.e. connected components) and their interrelationships and distribution through the network. Though such subgraphs can be completely general, our methodology focuses on the cases in which the nodes of these subgraphs share some special feature, such as being critical for the proper operation of the network. The methodology of subgraph characterization involves two main aspects: (i) the generation of histograms of subgraph sizes and distances between subgraphs and (ii) a merging algorithm, developed to assess the relevance of nodes outside subgraphs by progressively merging subgraphs until the whole network is covered. The latter procedure complements the histograms by taking into account the nodes lying between subgraphs, as well as the relevance of these nodes to the overall subgraph interconnectivity. Experiments were carried out using four types of network models and five instances of real-world networks, in order to illustrate how subgraph characterization can help complementing complex network-based studies.
Resumo:
In this work an iterative strategy is developed to tackle the problem of coupling dimensionally-heterogeneous models in the context of fluid mechanics. The procedure proposed here makes use of a reinterpretation of the original problem as a nonlinear interface problem for which classical nonlinear solvers can be applied. Strong coupling of the partitions is achieved while dealing with different codes for each partition, each code in black-box mode. The main application for which this procedure is envisaged arises when modeling hydraulic networks in which complex and simple subsystems are treated using detailed and simplified models, correspondingly. The potentialities and the performance of the strategy are assessed through several examples involving transient flows and complex network configurations.
Resumo:
A great part of the interest in complex networks has been motivated by the presence of structured, frequently nonuniform, connectivity. Because diverse connectivity patterns tend to result in distinct network dynamics, and also because they provide the means to identify and classify several types of complex network, it becomes important to obtain meaningful measurements of the local network topology. In addition to traditional features such as the node degree, clustering coefficient, and shortest path, motifs have been introduced in the literature in order to provide complementary descriptions of the network connectivity. The current work proposes a different type of motif, namely, chains of nodes, that is, sequences of connected nodes with degree 2. These chains have been subdivided into cords, tails, rings, and handles, depending on the type of their extremities (e.g., open or connected). A theoretical analysis of the density of such motifs in random and scale-free networks is described, and an algorithm for identifying these motifs in general networks is presented. The potential of considering chains for network characterization has been illustrated with respect to five categories of real-world networks including 16 cases. Several interesting findings were obtained, including the fact that several chains were observed in real-world networks, especially the world wide web, books, and the power grid. The possibility of chains resulting from incompletely sampled networks is also investigated.
Resumo:
Measurements of polar organic marker compounds were performed on aerosols that were collected at a pasture site in the Amazon basin (Rondonia, Brazil) using a high-volume dichotomous sampler (HVDS) and a Micro-Orifice Uniform Deposit Impactor (MOUDI) within the framework of the 2002 LBA-SMOCC (Large-Scale Biosphere Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall, and Climate: Aerosols From Biomass Burning Perturb Global and Regional Climate) campaign. The campaign spanned the late dry season (biomass burning), a transition period, and the onset of the wet season (clean conditions). In the present study a more detailed discussion is presented compared to previous reports on the behavior of selected polar marker compounds, including levoglucosan, malic acid, isoprene secondary organic aerosol (SOA) tracers and tracers for fungal spores. The tracer data are discussed taking into account new insights that recently became available into their stability and/or aerosol formation processes. During all three periods, levoglucosan was the most dominant identified organic species in the PM(2.5) size fraction of the HVDS samples. In the dry period levoglucosan reached concentrations of up to 7.5 mu g m(-3) and exhibited diel variations with a nighttime prevalence. It was closely associated with the PM mass in the size-segregated samples and was mainly present in the fine mode, except during the wet period where it peaked in the coarse mode. Isoprene SOA tracers showed an average concentration of 250 ng m(-3) during the dry period versus 157 ng m(-3) during the transition period and 52 ng m(-3) during the wet period. Malic acid and the 2-methyltetrols exhibited a different size distribution pattern, which is consistent with different aerosol formation processes (i.e., gas-to-particle partitioning in the case of malic acid and heterogeneous formation from gas-phase precursors in the case of the 2-methyltetrols). The 2-methyltetrols were mainly associated with the fine mode during all periods, while malic acid was prevalent in the fine mode only during the dry and transition periods, and dominant in the coarse mode during the wet period. The sum of the fungal spore tracers arabitol, mannitol, and erythritol in the PM(2.5) fraction of the HVDS samples during the dry, transition, and wet periods was, on average, 54 ng m(-3), 34 ng m(-3), and 27 ng m(-3), respectively, and revealed minor day/night variation. The mass size distributions of arabitol and mannitol during all periods showed similar patterns and an association with the coarse mode, consistent with their primary origin. The results show that even under the heavy smoke conditions of the dry period a natural background with contributions from bioaerosols and isoprene SOA can be revealed. The enhancement in isoprene SOA in the dry season is mainly attributed to an increased acidity of the aerosols, increased NO(x) concentrations and a decreased wet deposition.
Resumo:
In this perspectives article, we reflect upon the existence of chirality in atmospheric aerosol particles. We then show that organic particles collected at a field site in the central Amazon Basin under pristine background conditions during the wet and dry seasons consist of chiral secondary organic material. We show how the chiral response from the aerosol particles can be imaged directly without the need for sample dissolution, solvent extraction, or sample preconcentration. By comparing the chiral-response images with optical images, we show that chiral responses always originate from particles on the filter, but not all aerosol particles produce chiral signals. The intensity of the chiral signal produced by the size resolved particles strongly indicates the presence of chiral secondary organic material in the particle. Finally, we discuss the implications of our findings on chiral atmospheric aerosol particles in terms of climate-related properties and source apportionment.
Resumo:
The study of spectral behavior of networks has gained enthusiasm over the last few years. In particular, random matrix theory (RMT) concepts have proven to be useful. In discussing transition from regular behavior to fully chaotic behavior it has been found that an extrapolation formula of the Brody type can be used. In the present paper we analyze the regular to chaotic behavior of small world (SW) networks using an extension of the Gaussian orthogonal ensemble. This RMT ensemble, coined the deformed Gaussian orthogonal ensemble (DGOE), supplies a natural foundation of the Brody formula. SW networks follow GOE statistics until a certain range of eigenvalue correlations depending upon the strength of random connections. We show that for these regimes of SW networks where spectral correlations do not follow GOE beyond a certain range, DGOE statistics models the correlations very well. The analysis performed in this paper proves the utility of the DGOE in network physics, as much as it has been useful in other physical systems.
Resumo:
This work clarifies the relation between network circuit (topology) and behaviour (information transmission and synchronization) in active networks, e.g. neural networks. As an application, we show how one can find network topologies that are able to transmit a large amount of information, possess a large number of communication channels, and are robust under large variations of the network coupling configuration. This theoretical approach is general and does not depend on the particular dynamic of the elements forming the network, since the network topology can be determined by finding a Laplacian matrix (the matrix that describes the connections and the coupling strengths among the elements) whose eigenvalues satisfy some special conditions. To illustrate our ideas and theoretical approaches, we use neural networks of electrically connected chaotic Hindmarsh-Rose neurons.
Resumo:
We report a highly efficient switch built from an organic molecule assembled between single-wall carbon nanotube electrodes. We theoretically show that changes in the distance between the electrodes alter the molecular conformation within the gap, affecting in a dramatic way the electronic and charge transport properties, with an on/off ratio larger than 300. This opens up the perspective of combining molecular electronics with carbon nanotubes, bringing great possibilities for the design of nanodevices.
Resumo:
We present a scheme for quasiperfect transfer of polariton states from a sender to a spatially separated receiver, both composed of high-quality cavities filled by atomic samples. The sender and the receiver are connected by a nonideal transmission channel -the data bus- modelled by a network of lossy empty cavities. In particular, we analyze the influence of a large class of data-bus topologies on the fidelity and transfer time of the polariton state. Moreover, we also assume dispersive couplings between the polariton fields and the data-bus normal modes in order to achieve a tunneling-like state transfer. Such a tunneling-transfer mechanism, by which the excitation energy of the polariton effectively does not populate the data-bus cavities, is capable of attenuating appreciably the dissipative effects of the data-bus cavities. After deriving a Hamiltonian for the effective coupling between the sender and the receiver, we show that the decay rate of the fidelity is proportional to a cooperativity parameter that weighs the cost of the dissipation rate against the benefit of the effective coupling strength. The increase of the fidelity of the transfer process can be achieved at the expense of longer transfer times. We also show that the dependence of both the fidelity and the transfer time on the network topology is analyzed in detail for distinct regimes of parameters. It follows that the data-bus topology can be explored to control the time of the state-transfer process.
Resumo:
Large-scale cortical networks exhibit characteristic topological properties that shape communication between brain regions and global cortical dynamics. Analysis of complex networks allows the description of connectedness, distance, clustering, and centrality that reveal different aspects of how the network's nodes communicate. Here, we focus on a novel analysis of complex walks in a series of mammalian cortical networks that model potential dynamics of information flow between individual brain regions. We introduce two new measures called absorption and driftness. Absorption is the average length of random walks between any two nodes, and takes into account all paths that may diffuse activity throughout the network. Driftness is the ratio between absorption and the corresponding shortest path length. For a given node of the network, we also define four related measurements, namely in-and out-absorption as well as in-and out-driftness, as the averages of the corresponding measures from all nodes to that node, and from that node to all nodes, respectively. We find that the cat thalamo-cortical system incorporates features of two classic network topologies, Erdos-Renyi graphs with respect to in-absorption and in-driftness, and configuration models with respect to out-absorption and out-driftness. Moreover, taken together these four measures separate the network nodes based on broad functional roles (visual, auditory, somatomotor, and frontolimbic).
Resumo:
In this work we investigate knowledge acquisition as performed by multiple agents interacting as they infer, under the presence of observation errors, respective models of a complex system. We focus the specific case in which, at each time step, each agent takes into account its current observation as well as the average of the models of its neighbors. The agents are connected by a network of interaction of Erdos-Renyi or Barabasi-Albert type. First, we investigate situations in which one of the agents has a different probability of observation error (higher or lower). It is shown that the influence of this special agent over the quality of the models inferred by the rest of the network can be substantial, varying linearly with the respective degree of the agent with different estimation error. In case the degree of this agent is taken as a respective fitness parameter, the effect of the different estimation error is even more pronounced, becoming superlinear. To complement our analysis, we provide the analytical solution of the overall performance of the system. We also investigate the knowledge acquisition dynamic when the agents are grouped into communities. We verify that the inclusion of edges between agents (within a community) having higher probability of observation error promotes the loss of quality in the estimation of the agents in the other communities.
Resumo:
Biological neuronal networks constitute a special class of dynamical systems, as they are formed by individual geometrical components, namely the neurons. In the existing literature, relatively little attention has been given to the influence of neuron shape on the overall connectivity and dynamics of the emerging networks. The current work addresses this issue by considering simplified neuronal shapes consisting of circular regions (soma/axons) with spokes (dendrites). Networks are grown by placing these patterns randomly in the two-dimensional (2D) plane and establishing connections whenever a piece of dendrite falls inside an axon. Several topological and dynamical properties of the resulting graph are measured, including the degree distribution, clustering coefficients, symmetry of connections, size of the largest connected component, as well as three hierarchical measurements of the local topology. By varying the number of processes of the individual basic patterns, we can quantify relationships between the individual neuronal shape and the topological and dynamical features of the networks. Integrate-and-fire dynamics on these networks is also investigated with respect to transient activation from a source node, indicating that long-range connections play an important role in the propagation of avalanches.
Resumo:
One important issue implied by the finite nature of real-world networks regards the identification of their more external (border) and internal nodes. The present work proposes a formal and objective definition of these properties, founded on the recently introduced concept of node diversity. It is shown that this feature does not exhibit any relevant correlation with several well-established complex networks measurements. A methodology for the identification of the borders of complex networks is described and illustrated with respect to theoretical (geographical and knitted networks) as well as real-world networks (urban and word association networks), yielding interesting results and insights in both cases.
Resumo:
A 260 nm layer of organic bulk heterojunction blend of the polymer poly(3-hexylthiophene) (P3HT) and the fullerene [6,6]-phenyl C(61)-butyric (PCBM) was spin-coated in between aluminum and gold electrodes, respectively, on top of a laser inscribed azo polymer surface-relief diffraction grating. Angle-dependent surface plasmons (SPs) with a large band gap were observed in the normalized photocurrent by the P3HT-PCBM layer as a function of wavelength. The SP-induced photocurrents were also investigated as a function of the grating depth and spacing.