85 resultados para ORC
Resumo:
Lo scopo di questa tesi è quello di analizzare dapprima l’impatto ambientale di tali impianti e poi analizzare il contributo effettivo che oggi la tecnologia innovativa dei cicli Rankine organici può dare nella valorizzazione elettrica del calore di scarto di processi industriali, focalizzando l’obiettivo principalmente sulle turbine a gas ed eseguendo un caso di studio in un settore ancora poco esplorato da questa tecnologia, quello Oil&Gas. Dopo aver effettuato il censimento degli impianti a fonti fossili e rinnovabili, cogenerativi e non, presenti in Emilia-Romagna, è stato sviluppato un software chiamato MiniBref che permette di simulare il funzionamento di una qualsiasi centrale termoelettrica grazie alla possibilità di combinare la tecnologia dell’impianto con il tipo di combustibile consentendo la valutazione delle emissioni inquinanti ed i potenziali di inquinamento. Successivamente verranno illustrati gli ORC, partendo dalle caratteristiche impiantistiche e termodinamiche fino ad arrivare alla scelta del fluido organico, fondamentale per le performance del ciclo. Dopo aver effettuato una ricognizione dello stato dell’arte delle applicazioni industriali degli ORC nel recupero termico, verranno eseguite simulazioni numeriche per ricostruire gli ORC ed avere una panoramica il più completa ed attendibile delle prestazioni effettive di questi sistemi. In ultimo verranno illustrati i risultati di un caso di studio che vede l’adozione di recupero mediante ciclo organico in un’installazione esistente del settore Oil&Gas. Si effettuerà uno studio delle prestazione dell’impianto al variare delle pressioni massime e minime del ciclo ed al variare del fluido impiegato al fine di mostrare come questi parametri influenzino non solo le performance ma anche le caratteristiche impiantistiche da adottare. A conclusione del lavoro si riporteranno i risultati relativi all’analisi condotte considerando l’impianto ai carichi parziali ed in assetto cogenerativo.
Resumo:
In a world focused on the need to produce energy for a growing population, while reducing atmospheric emissions of carbon dioxide, organic Rankine cycles represent a solution to fulfil this goal. This study focuses on the design and optimization of axial-flow turbines for organic Rankine cycles. From the turbine designer point of view, most of this fluids exhibit some peculiar characteristics, such as small enthalpy drop, low speed of sound, large expansion ratio. A computational model for the prediction of axial-flow turbine performance is developed and validated against experimental data. The model allows to calculate turbine performance within a range of accuracy of ±3%. The design procedure is coupled with an optimization process, performed using a genetic algorithm where the turbine total-to-static efficiency represents the objective function. The computational model is integrated in a wider analysis of thermodynamic cycle units, by providing the turbine optimal design. First, the calculation routine is applied in the context of the Draugen offshore platform, where three heat recovery systems are compared. The turbine performance is investigated for three competing bottoming cycles: organic Rankine cycle (operating cyclopentane), steam Rankine cycle and air bottoming cycle. Findings indicate the air turbine as the most efficient solution (total-to-static efficiency = 0.89), while the cyclopentane turbine results as the most flexible and compact technology (2.45 ton/MW and 0.63 m3/MW). Furthermore, the study shows that, for organic and steam Rankine cycles, the optimal design configurations for the expanders do not coincide with those of the thermodynamic cycles. This suggests the possibility to obtain a more accurate analysis by including the computational model in the simulations of the thermodynamic cycles. Afterwards, the performance analysis is carried out by comparing three organic fluids: cyclopentane, MDM and R245fa. Results suggest MDM as the most effective fluid from the turbine performance viewpoint (total-to-total efficiency = 0.89). On the other hand, cyclopentane guarantees a greater net power output of the organic Rankine cycle (P = 5.35 MW), while R245fa represents the most compact solution (1.63 ton/MW and 0.20 m3/MW). Finally, the influence of the composition of an isopentane/isobutane mixture on both the thermodynamic cycle performance and the expander isentropic efficiency is investigated. Findings show how the mixture composition affects the turbine efficiency and so the cycle performance. Moreover, the analysis demonstrates that the use of binary mixtures leads to an enhancement of the thermodynamic cycle performance.
Resumo:
In the last years, the European countries have paid increasing attention to renewable sources and greenhouse emissions. The Council of the European Union and the European Parliament have established ambitious targets for the next years. In this scenario, biomass plays a prominent role since its life cycle produces a zero net carbon dioxide emission. Additionally, biomass can ensure plant operation continuity thanks to its availability and storage ability. Several conventional systems running on biomass are available at the moment. Most of them are performant either in the large-scale or in the small power range. The absence of an efficient system on the small-middle scale inspired this thesis project. The object is an innovative plant based on a wet indirectly fired gas turbine (WIFGT) integrated with an organic Rankine cycle (ORC) unit for combined heat and power production. The WIFGT is a performant system in the small-middle power range; the ORC cycle is capable of giving value to low-temperature heat sources. Their integration is investigated in this thesis with the aim of carrying out a preliminary design of the components. The targeted plant output is around 200 kW in order not to need a wide cultivation area and to avoid biomass shipping. Existing in-house simulation tools are used: They are adapted to this purpose. Firstly the WIFGT + ORC model is built; Zero-dimensional models of heat exchangers, compressor, turbines, furnace, dryer and pump are used. Different fluids are selected but toluene and benzene turn out to be the most suitable. In the indirectly fired gas turbine a pressure ratio around 4 leads to the highest efficiency. From the thermodynamic analysis the system shows an electric efficiency of 38%, outdoing other conventional plants in the same power range. The combined plant is designed to recover thermal energy: Water is used as coolant in the condenser. It is heated from 60°C up to 90°C, ensuring the possibility of space heating. Mono-dimensional models are used to design the heat exchange equipment. Different types of heat exchangers are chosen depending on the working temperature. A finned-plate heat exchanger is selected for the WIFGT heat transfer equipment due to the high temperature, oxidizing and corrosive environment. A once-through boiler with finned tubes is chosen to vaporize the organic fluid in the ORC. A plate heat exchanger is chosen for the condenser and recuperator. A quasi-monodimensional model for single-stage axial turbine is implemented to design both the WIFGT and the ORC turbine. The system simulation after the components design shows an electric efficiency around 34% with a decrease by 10% compared to the zero-dimensional analysis. The work exhibits the system potentiality compared to the existing plants from both technical and economic point of view.
Resumo:
BACKGROUND Open radical cystectomy (ORC) is associated with substantial blood loss and a high incidence of perioperative blood transfusions. Strategies to reduce blood loss and blood transfusion are warranted. OBJECTIVE To determine whether continuous norepinephrine administration combined with intraoperative restrictive hydration with Ringer's maleate solution can reduce blood loss and the need for blood transfusion. DESIGN, SETTING, AND PARTICIPANTS This was a double-blind, randomised, parallel-group, single-centre trial including 166 consecutive patients undergoing ORC with urinary diversion (UD). Exclusion criteria were severe hepatic or renal dysfunction, congestive heart failure, and contraindications to epidural analgesia. INTERVENTION Patients were randomly allocated to continuous norepinephrine administration starting with 2 μg/kg per hour combined with 1 ml/kg per hour until the bladder was removed, then to 3 ml/kg per hour of Ringer's maleate solution (norepinephrine/low-volume group) or 6 ml/kg per hour of Ringer's maleate solution throughout surgery (control group). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Intraoperative blood loss and the percentage of patients requiring blood transfusions perioperatively were assessed. Data were analysed using nonparametric statistical models. RESULTS AND LIMITATIONS Total median blood loss was 800 ml (range: 300-1700) in the norepinephrine/low-volume group versus 1200 ml (range: 400-2800) in the control group (p<0.0001). In the norepinephrine/low-volume group, 27 of 83 patients (33%) required an average of 1.8 U (±0.8) of packed red blood cells (PRBCs). In the control group, 50 of 83 patients (60%) required an average of 2.9 U (±2.1) of PRBCs during hospitalisation (relative risk: 0.54; 95% confidence interval [CI], 0.38-0.77; p=0.0006). The absolute reduction in transfusion rate throughout hospitalisation was 28% (95% CI, 12-45). In this study, surgery was performed by three high-volume surgeons using a standardised technique, so whether these significant results are reproducible in other centres needs to be shown. CONCLUSIONS Continuous norepinephrine administration combined with restrictive hydration significantly reduces intraoperative blood loss, the rate of blood transfusions, and the number of PRBC units required per patient undergoing ORC with UD.
Resumo:
CONTEXT Robot-assisted surgery is increasingly used for radical cystectomy (RC) and urinary reconstruction. Sufficient data have accumulated to allow evidence-based consensus on key issues such as perioperative management, comparative effectiveness on surgical complications, and oncologic short- to midterm outcomes. OBJECTIVE A 2-d conference of experts on RC and urinary reconstruction was organized in Pasadena, California, and the City of Hope Cancer Center in Duarte, California, to systematically review existing peer-reviewed literature on robot-assisted RC (RARC), extended lymphadenectomy, and urinary reconstruction. No commercial support was obtained for the conference. EVIDENCE ACQUISITION A systematic review of the literature was performed in agreement with the PRISMA statement. EVIDENCE SYNTHESIS Systematic literature reviews and individual presentations were discussed, and consensus on all key issues was obtained. Most operative, intermediate-term oncologic, functional, and complication outcomes are similar between open RC (ORC) and RARC. RARC consistently results in less blood loss and a reduced need for transfusion during surgery. RARC generally requires longer operative time than ORC, particularly with intracorporeal reconstruction. Robotic assistance provides ergonomic value for surgeons. Surgeon experience and institutional volume strongly predict favorable outcomes for either open or robotic techniques. CONCLUSIONS RARC appears to be similar to ORC in terms of operative, pathologic, intermediate-term oncologic, complication, and most functional outcomes. RARC consistently results in less blood loss and a reduced need for transfusion during surgery. RARC can be more expensive than ORC, although high procedural volume may attenuate this difference. PATIENT SUMMARY Robot-assisted radical cystectomy (RARC) is an alternative to open surgery for patients with bladder cancer who require removal of their bladder and reconstruction of their urinary tract. RARC appears to be similar to open surgery for most important outcomes such as the rate of complications and intermediate-term cancer-specific survival. Although RARC has some ergonomic advantages for surgeons and may result in less blood loss during surgery, it is more time consuming and may be more expensive than open surgery.
Resumo:
CONTEXT Although open radical cystectomy (ORC) is still the standard approach, laparoscopic radical cystectomy (LRC) and robot-assisted radical cystectomy (RARC) are increasingly performed. OBJECTIVE To report on a systematic literature review and cumulative analysis of pathologic, oncologic, and functional outcomes of RARC in comparison with ORC and LRC. EVIDENCE ACQUISITION Medline, Scopus, and Web of Science databases were searched using a free-text protocol including the terms robot-assisted radical cystectomy or da Vinci radical cystectomy or robot* radical cystectomy. RARC case series and studies comparing RARC with either ORC or LRC were collected. A cumulative analysis was conducted. EVIDENCE SYNTHESIS The searches retrieved 105 papers, 87 of which reported on pathologic, oncologic, or functional outcomes. Most series were retrospective and had small case numbers, short follow-up, and potential patient selection bias. The lymph node yield during lymph node dissection was 19 (range: 3-55), with half of the series following an extended template (yield range: 11-55). The lymph node-positive rate was 22%. The performance of lymphadenectomy was correlated with surgeon and institutional volume. Cumulative analyses showed no significant difference in lymph node yield between RARC and ORC. Positive surgical margin (PSM) rates were 5.6% (1-1.5% in pT2 disease and 0-25% in pT3 and higher disease). PSM rates did not appear to decrease with sequential case numbers. Cumulative analyses showed no significant difference in rates of surgical margins between RARC and ORC or RARC and LRC. Neoadjuvant chemotherapy use ranged from 0% to 31%, with adjuvant chemotherapy used in 4-29% of patients. Only six series reported a mean follow-up of >36 mo. Three-year disease-free survival (DFS), cancer-specific survival (CSS), and overall survival (OS) rates were 67-76%, 68-83%, and 61-80%, respectively. The 5-yr DFS, CSS, and OS rates were 53-74%, 66-80%, and 39-66%, respectively. Similar to ORC, disease of higher pathologic stage or evidence of lymph node involvement was associated with worse survival. Very limited data were available with respect to functional outcomes. The 12-mo continence rates with continent diversion were 83-100% in men for daytime continence and 66-76% for nighttime continence. In one series, potency was recovered in 63% of patients who were evaluable at 12 mo. CONCLUSIONS Oncologic and functional data from RARC remain immature, and longer-term prospective studies are needed. Cumulative analyses demonstrated that lymph node yields and PSM rates were similar between RARC and ORC. Conclusive long-term survival outcomes for RARC were limited, although oncologic outcomes up to 5 yr were similar to those reported for ORC. PATIENT SUMMARY Although open radical cystectomy (RC) is still regarded as the standard treatment for muscle-invasive bladder cancer, laparoscopic and robot-assisted RCs are becoming more popular. Templates of lymph node dissection, lymph node yields, and positive surgical margin rates are acceptable with robot-assisted RC. Although definitive comparisons with open RC with respect to oncologic or functional outcomes are lacking, early results appear comparable.
El concepto de surveillance : Aspectos éticos desde las ciencias de la información y la comunicación
Resumo:
Se analiza la problemática generada en torno al uso que presenta el concepto de surveillance para la ORC, desde la perspectiva ética que incluye dos visiones complementarias aportadas por las Ciencias de la Información y las Ciencias de la Comunicación. Se plantea el problema acudiendo a las definiciones generales y específicas del término, para luego analizarlo desde el punto de vista ético que incluye las visiones de los dos campos del conocimiento mencionados. Finalmente se reflexiona sobre los imperativos éticos que incluyen ambas visones, concluyendo en la necesidad de mayor divulgación y jerarquización del problema planteado
El concepto de surveillance : Aspectos éticos desde las ciencias de la información y la comunicación
Resumo:
Se analiza la problemática generada en torno al uso que presenta el concepto de surveillance para la ORC, desde la perspectiva ética que incluye dos visiones complementarias aportadas por las Ciencias de la Información y las Ciencias de la Comunicación. Se plantea el problema acudiendo a las definiciones generales y específicas del término, para luego analizarlo desde el punto de vista ético que incluye las visiones de los dos campos del conocimiento mencionados. Finalmente se reflexiona sobre los imperativos éticos que incluyen ambas visones, concluyendo en la necesidad de mayor divulgación y jerarquización del problema planteado
El concepto de surveillance : Aspectos éticos desde las ciencias de la información y la comunicación
Resumo:
Se analiza la problemática generada en torno al uso que presenta el concepto de surveillance para la ORC, desde la perspectiva ética que incluye dos visiones complementarias aportadas por las Ciencias de la Información y las Ciencias de la Comunicación. Se plantea el problema acudiendo a las definiciones generales y específicas del término, para luego analizarlo desde el punto de vista ético que incluye las visiones de los dos campos del conocimiento mencionados. Finalmente se reflexiona sobre los imperativos éticos que incluyen ambas visones, concluyendo en la necesidad de mayor divulgación y jerarquización del problema planteado
Resumo:
Este proyecto tiene por objeto el aprovechamiento de calor residual de corrientes de refinería, con bajo nivel térmico y su transformación en energía eléctrica, mediante el ciclo orgánico de Rankine (ORC). Este proceso es similar al ciclo básico de Rankine pero en vez de agua utiliza un fluido orgánico de elevado peso molecular. Este tipo de ciclos se puede utilizar para recuperar calor de fuentes de baja temperatura. Este calor se convierte en trabajo útil que se transforma en electricidad. El principio de trabajo del ciclo orgánico de Rankine es un fluido de trabajo en fase líquida que se bombea a una caldera, donde se evapora y tras pasar a través de una turbina, se condensa de nuevo para iniciar el ciclo. Para la elección de las tecnologías ORC se realizó un estudio de las disponibles en el mercado y se llevó a cabo un análisis de las corrientes con calor residual disponibles en la refinería. Seleccionadas las tecnologías, se realizó un análisis de viabilidad del uso de ciclos ORC para el aprovechamiento de la energía residual en la refinería. Los resultados confirmaron que la aplicación de estos ciclos ORC es rentable, desde el punto de vista económico, técnico y medioambiental. ABSTRACT The objective of the project is the utilization of waste heat from low thermal refinery streams and its subsequent transformation into electrical energy through the application of Organic Rankine Cycle (ORC). This process is similar to Rankine’s basic cycle but instead of water it uses a heavier molecular organic fluid. This type of cycles can be put into use to recover heat from low temperature sources. The heat transforms into useful energy that is converted into electricity. The working principle of the Organic Rankine Cycle is an active fluid in liquid phase which is pumped into a boiler where it evaporates and, after passing through a turbine, it condenses once more restarting the whole cycle over again. Before choosing the ORC technologies, a study was conducted on those products available in the market and an analysis of the waste streams in the refinery was also carried out. Having chosen the technologies, a feasibility study was performed on the use of ORC cycles for the re-utilization of waste energy in the refinery. The results confirmed that the use of ORC cycles is profitable, making it attractive from an economical, technical and environmental point of view.