988 resultados para Nylon-6
Resumo:
By reducing the attraction between the platelets of octaclecylammonium chloride modified montmorillonite (OMMT-C18) via pre-intercalation of maleated polypropylene (MAPP), OMMT-C18 was exfoliated in thermoplastic polyurethane (TPU) matrix during melt-mixing. Wide angle X-ray diffraction, transmission electron microscopy and thermogravimetric analysis were used to investigate the microstructure of TPU nanocomposites. Three factors (including introducing sequence, the kind and the content of MAPP) showed important effects on the dispersion degree of OMMT-C18 in TPU matrix. The results confirmed that the pre-intercalation of MAPP was necessary for the exfoliation of OMMT-C18; however, the role of MAPP in TPU nanocomposites was different from that in polypropylene nanocomposites.
Resumo:
Organic thin-film transistor memory devices were realized by inserting a layer of nanoparticles (such as Ag or CaF2) between two Nylon 6 gate dielectrics as the floating gate. The transistor memories were fabricated on glass substrates by full thermal deposition. The transistors exhibit significant hysteresis behavior in current-voltage characteristics, due to the separated Ag or CaF2 nanoparticle islands that act as charge trap centers. The mechanism of the transistor memory operation was discussed.
Resumo:
Syndiotactic 1,2-polybutadiene/organoclay nanocomposites were prepared and characterized by thermogravimetry analysis (TGA), X-ray diffraction (XRD), polarized optical microscopy (POM), and differential scanning calorimetry (DSC), respectively. The XRD shows that exfoliated nanocomposites are formed dominantly at lower clay concentrations (less than 2%), at higher clay contents intercalated nanocomposites dominate. At the same time, the XRD indicates that the crystal structures of sPB formed in the sPB/organoclay nanocomposites do not vary, only the relative intensity of the peaks corresponding to (0 1 0) and (2 0 0)/(1 1 0) crystal planes, respectively, varies. The DSC and POM indicate that organoclay layers can improve cooling crystallization temperature, crystallization rate and reducing the spherulite sizes of sPB. TGA shows that under argon flow the nanocomposites exhibit slight decrease of thermal stability, while under oxygen flow the resistance of oxidation and thermal stability of sPB/organoclay nanocomposites were significantly improved relative to pristine sPB. The primary and secondary crystallization for pristine sPB and sPB/organoclay (2%) nanocomposites were analyzed and compared based on different approaches.
Resumo:
Organically modified montmorillonites (OMMTs) by octadecylammonium chloride with two adsorption levels were dispersed in polyamide 12 (PA12) matrices with two molecular weights for different melt mixing times in order to investigate morphology evolutions and factors influencing fabrication of PA12 nanocomposites. Different adsorption levels of the modifier in the OMMTs provide different environments for diffusion of polymer chains and different attractions between MMT layers. Wide-angle X-ray diffraction (WAXD), transmission electron microscope (TEM) and gas permeability were used to characterize morphologies of the nanocomposites. Both OMMTs can be exfoliated in the PA12 matrix with higher molecular weight, but only OMMT with lower adsorption level can be exfoliated in the PA12 matrix with lower molecular weight. It was attributed to the differences in the levels of shear stress and molecular diffusion in the nanocomposites. The exfoliation of OMMT platelets results from a combination of molecular diffusion and shear. After intercalation of PA12 into interlayer of OMMT in the initial period of mixing, further dispersion of OMMTs in PA12 matrices is controlled by a slippage process of MMT layers during fabricating PA12 nanocomposites with exfoliated structure.
Resumo:
An organic integrated pixel consisting of an organic light-emitting diode driven by an organic thin-film field-effect transistor (OTFT) was fabricated by a full evaporation method oil a transparent glass substrate. The OTFT was designed as a top-gate Structure, and the insulator is composed of a double-layer polymer of Nylon 6 and Teflon to lower the operation voltage and the gate-leakage current, and improve the device stability. The field-effect mobility of the OTFT is more than 0.5 cm(2) V-1 s(-1), and the on/off ratio is larger than 10(3). The brightness of the pixel reached as large as 300 cd m(-2) at a driving current of 50 mu A.
Resumo:
The crystalline-phase transition in polyamide-66/montmorillonite nanocomposites before melting was investigated by in situ X-ray diffraction and is reported for the first time in this work. The phase-transition temperature in the nanocomposites was 170 degreesC, 20 degreesC lower than that in polyamide-66. The lower phase-transition temperature of the nanocomposites could be attributed to the gamma-phase-favorable environment caused by silicate layers. Meanwhile, the addition of silicate layers changed the crystal structure of the polyamide-66 matrix and influenced the phase-transition behavior.
Resumo:
The toughness of polypropylene (PP)/ethylene-propylene-diene monomer (EPDM) blends was studied over wide ranges of EPDM content and temperature. In order to study the effect of notch radius (R), the toughness of the samples with different notch radii was determined from Izod impact test. The results showed that both toughness and brittle-ductile transition (BDT) of the blends were a function of R, respectively. At test temperatures, the toughness tended to decrease with increasing 1/R for various PP/EPDM blends. Moreover, the brittle-ductile transition temperature (T-BT) increased with increasing 1/R, whereas the critical interparticle distance (IDc) reduced with increasing 1/R. Finally, it was found that the different curves of IDc versus test temperature (T) for different notches reduced down to a master curve if plotting IDc versus T-BT(m)-T, where T-BT(m) was the T-BT of PP itself for a given notch, indicating that T-BT(m)-T was a more universal parameter that determined the BDT of polymers. This conclusion was well in agreement with the theoretical prediction.
Resumo:
The influence of nanodispersed clay on the alpha crystalline structure of polyamide 6 (PA6) was examined in-situ with X-ray diffraction (XRD) between room temperature and melting. In pure PA6 upon annealing the alpha crystalline phase was substituted by an unstable pseudohexagonal phase at 150degreesC, then it transformed into a new stable crystalline structure - high temperature alpha' phase above the transition temperature. However, in PA6/clay nanocomposite (PA6CN), the alpha phase did not present crystalline phase transition on heating. The increase in the annealing temperature only led to continuous intensity variation. The different behaviors were caused by the confined spaces formed by silicate layers, which constrained the mobility of the polymer chains in-between.
Resumo:
Based on Takayanagi's two-phase model, a three-phase model including the matrix, interfacial region, and fillers is proposed to calculate the tensile modulus of polymer nanocomposites (E-c). In this model, fillers (sphere-, cylinder- or plate-shape) are randomly distributed in a matrix. If the particulate size is in the range of nanometers, the interfacial region will play an important role in the modulus of the composites. Important system parameters include the dispersed particle size (t), shape, thickness of the interfacial region (tau), particulate-to-matrix modulus ratio (E-d/E-m), and a parameter (k) describing a linear gradient change in modulus between the matrix and the surface of particle on the modulus of nanocomposites (E-c). The effects of these parameters are discussed using theoretical calculation and nylon 6/montmorillonite nanocomposite experiments. The former three factors exhibit dominant influence on E-c At a fixed volume fraction of the dispersed phase, smaller particles provide an increasing modulus for the resulting composite, as compared to the larger one because the interfacial region greatly affects E-c. Moreover, since the size of fillers is in the scale of micrometers, the influence of interfacial region is neglected and the deduced equation is reduced to Takayanagi's model. The curves predicted by the three-phase model are in good agreement with experimental results. The percolation concept and theory are also applied to analyze and interpret the experimental results.
Resumo:
The structure and thermal properties of polyamide-1010 (PA1010), treated at 250degreesC for 30 min under pressures of 0.7-2.5 GPa, were studied with wide-angle X-ray diffraction (WAXD), infrared (IR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Crystals were formed when the pressures were less than 1.0 GPa or greater than 1.2 GPa. With increasing pressure, the intensity of the diffraction peak at approximately 24degrees was enhanced, whereas the peak at approximately 20degrees was depressed. The triclinic crystal structure of PA1010 was preserved. The highest melting temperature of the crystals obtained in this work was 208degreesC for PA1010 treated at 1.5 GPa. Crosslinking occurred under pressures of 1.0-1.2 GPa. Only a broad diffraction peak centered at approximately 20degrees was observed on WAXD patterns, and no melting and crystallization peaks were found on DSC curves. IR spectra of crosslinked PA1010 showed a remarkable absorption band at 1370 cm(-1). The N-H stretching vibration band at 3305 cm(-1) was weakened. Crystallized PA1010 had a higher thermal stability than crosslinked PA1010, as indicated on TGA curves by a higher onset temperature of decomposition.
Resumo:
The binary blends of polyamide 1010 (PA1010) with the high-impact polystyrene (HIPS)/maleic anhydride (MA) graft copolymer (HIPS-g-MA) and with HIPS were prepared using a wide composition range. Different blend morphologies were observed by scanning electron microscopy according to the nature and content of PA1010 used. Compared with the PA1010/HIPS binary blends, the domain sizes of dispersed-phase particles in PA1010/HIPS-g-MA blends were much smaller than that in PA1010/HIPS blends at the same compositions. It was found that the tensile properties of PA1010/HIPS-g-MA blends were obviously better than that of PA 1010/HIPS blends. Wide-angle xray diffraction analyses were performed to confirm that the number of hydrogen bonds in the PA1010 phase decreased in the blends of PA1010/HIPS-g-MA. These behaviors could be attributed to the chemical interactions between the two components and good dispersion in PA1010/HIPS-g-MA blends.
Resumo:
The toughness of polypropylene (PP)/ethylene-propylene-diene monomer rubber (EPDM) blends containing various EPDM contents as a function of the tensile speed was studied. The toughness of the blends was determined from the tensile fracture energy of the side-edge notched samples. A sharp brittle-tough transition was observed in the fracture energy versus interparticle distance (ID) curves when the crosshead speed < 102.4 mm/min. It was observed that the brittle-ductile transition of PP/EPDM blend occurred either by reducing ID or by decreasing the tensile speed. The correlation between the critical interparticle distance and tensile deformation rate was compared with that between the critical interparticle distance and temperature for PP/EPDM blends. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The variation of lattice spacings of poly(iminosebacoyl iminodecamethylene) (nylon-10,10) with temperature was studied by wide-angle X-ray diffraction (WAXD) during both heating and cooling processes, which demonstrates a gradual and continuous transition with temperature. However, the crystal melts before the two peaks merge completely. Both WAXD and differential scanning calorimetry show that crystallization from molten sample results directly in the triclinic form. Additionally, this transition is thermodynamically reversible. Comparison of this transition with that of nylon-6,6, suggests that no hydrogen-bonded network is formed during or after the transition. We prefer to attribute this transition to asymmetrical thermal expansion in the nylon-10,10 crystals rather than to a true first-order phase transition. (C) 2001 Society of Chemical Industry.
Resumo:
The crystallization behaviors, dynamic mechanical properties, tensile, and morphology features of polyamide1010 (PA1010) blends with the high-impact polystyrene (HIPS) were examined at a wide composition range. Both unmodified and maleicanhydride-(MA)-grafted HIPS (HIPS-g-MA) were used. It was found that the domain size of HIPS-g-MA was much smaller than that of HIPS at the same compositions in the blends. The mechanical performances of PA1010-HIPS-g-MA blends were enhanced much more than that of PA1010-HIPS blends. The crystallization temperature of PA1010 shifted towards higher temperature as HIPS-g-MA increased from 20 to 50% in the blends. For the blends with a dispersed PA phase (less than or equal to 35 wt %), the T-c of PA1010 shifted towards lower temperature, from 178 to 83 degrees C. An additional transition was detected at a temperature located between the T-g's of PA1010 and PS. It was associated with the interphase relaxation peak. Its intensity increased with increasing content of PA1010, and the maximum occurred at the composition of PA1010-HIPS-g-MA 80/20. (C) 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 857-865, 1999.
Resumo:
The graft copolymer of high-impact polystyrene (HIPS) grafted with maleic anhydride (MA) (HIPS-g-MA) was prepared with melt mixing in the presence of a free-radical initiator. The grafting reaction was confirmed by infrared analyses, and the amount of MA grafted on HIPS was evaluated by a titration method. 1-5% of MA can be grafted on HIPS. HIPS-g-MA is miscible with HIPS. Its anhydride group can react with polyamide 1010 (PA1010) during melt mixing of the two components. The compatibility of HIPS-g-MA. in the HIPS/PA1010 blends was evident. Evidence of reactions in the blends was confirmed in the morphology and mechanical behavior of the blends. A significant reduction in domain size was observed because of the compatibilization of HIPS-g-MA in the blends of HIPS and PA1010. The tensile mechanical properties of the prepared blends were investigated, and the fracture surfaces of the blends were examined by means of the scanning electron microscope. The improved adhesion in a 15% HIPS/75% PA1010 blend with 10% HIPS-g-MA copolymer was detected. The morphology of fibrillar ligaments formed by PA1010 connecting HIPS particles was observed. (C) 1999 John Wiley & Sons, Inc.