972 resultados para Nutrient Concentrations
Resumo:
We examined controls on the carbon isotopic composition of sea ice brines and organic matter during cruises to the Ross Sea, Antarctica in November/December 1998 and November/December 2006. Brine samples were analyzed for salinity, nutrients, total dissolved inorganic carbon (sum CO2), and the 13C/12C ratio of Sum CO2 (d13C(sum CO2)). Particulate organic matter from sea ice cores was analyzed for percent particulate organic carbon (POC), percent total particulate nitrogen (TPN), and stable carbon isotopic composition (d13C(POC)). Sum CO2 in sea ice brines ranged from 1368 to 7149 µmol/kg, equivalent to 1483 to 2519 µmol/kg when normalized to 34.5 psu salinity (s sum CO2), the average salinity of Ross Sea surface waters. Sea ice primary producers removed up to 34% of the available sum CO2, an amount much higher than the maximum removal observed in sea ice free water. Carbonate precipitation and CO2 degassing may reduce s sum CO2 by a similar amount (e.g., 30%) in the most hypersaline sea ice environments, although brine volumes are low in very cold ice that supports these brines. Brine d13C(sum CO2) ranged from -2.6 to +8.0 per mil while d13C(POC) ranged from -30.5 to -9.2 per mil. Isotopic enrichment of the sum CO2 pool via net community production accounts for some but not all carbon isotopic enrichment of sea ice POC. Comparisons of s sum CO2, d13C(sum CO2), and d13C(POC) within sea ice suggest that epsilon p (the net photosynthetic fractionation factor) for sea ice algae is ~8 per mil smaller than the epsilon p observed for phytoplankton in open water regions of the Ross Sea. These results have implications for modeling of carbon uptake and transformation in the ice-covered ocean and for reconstruction of past sea ice extent based on stable isotopic composition of organic matter in sediment cores.
Resumo:
Samples were taken along a transect in the North Atlantic Ocean from 66°139.27'N; 29°136.65'W to 34°124.87'N; 28°128.90'W during the VISION cruise (diVersIty, Structure and functION) MSM03/01 on board the research vessel Maria S. Merian from September 21 to September 30, 2006. Along this transect, each station was sampled at 12 depths, from 10m down to 250m or 500m. Samples were collected with a rosette of 20-l Niskin bottles mounted on a conductivity-temperature-density profiler. Water samples for nutrients analysis were filtered directly after sampling through 0.45-µm in-line filters attached to a 60-ml pre-cleaned syringe into two 12-ml polystyrole tubes. Samples were stored at 4°C (dissolved silicate) or 80°C (ammonium, phosphate, nitrate and nitrite) The samples were spectrophotometrically measured with a continuous-flow analyzer using standard AA3 methods (Seal Analytical, Norderstedt, Germany) using a variant of the method of Grasshoff et al. (1983).
Resumo:
Calculations of new production (NP) are made based on hydrochemical characteristics, recycling production (RP) is assessed on the basis of recycling of phosphorus and nitrogen. Photosynthesis, coupling with uptake of nutrients and development of minimum of silicate and maximum of oxygen, at the lower chlorophyll maximum in the pycnocline is discussed. In situ determination of production by C-14 and oxygen and vertical scanning of chlorophyll A have permitted to calculate assimilation numbers for all the biohydrochemical areas and to map primary production (PP) distribution in the Bering Sea. The total PP in the Bering Sea has been assessed as 6.4x10**8 t C/yr.