939 resultados para Nuclear nationalism
Resumo:
N,N-dimethyl-pyrrolidinium iodide has been investigated using differential scanning calorimetry, nuclear magnetic resonance (NMR) spectroscopy, second moment calculations, and impedance spectroscopy. This pyrrolidinium salt exhibits two solid-solid phase transitions, one at 373 K having an entropy change, Delta S, of 38 J mol(-1) K-1 and one at 478 K having Delta S of 5.7 J mol(-1) K-1. The second moment calculations relate the lower temperature transition to a homogenization of the sample in terms of the mobility of the cations, while the high temperature phase transition is within the temperature region of isotropic tumbling of the cations. At higher temperatures a further decrease in the H-1 NMR linewidth is observed which is suggested to be due to diffusion of the cations. (C) 2005 American Institute of Physics.
Resumo:
Dendritic cells (DC) are potent APCs that enter resting tissues as precursors and, after Ag exposure, differentiate and migrate to draining lymph nodes. The phenotype of RelB knockout mice implicates this member of the NF kappa B/Rel family in DC differentiation. To further elucidate the role of RelB in DC differentiation, mRNA, intracellular protein expression, and DNA binding activity of RelB were examined in immature and differentiated human DC, as well as other PB mononuclear cell populations. RelB protein and mRNA were detected constitutively in lymphocytes and in activated monocytes, differentiated DC, and monocyte-derived DC. Immunohistochemical staining demonstrated RelB within the differentiated lymph node interdigitating DC and follicular DC, but not undifferentiated DC in normal skin. Active nuclear RelB was detected by supershift assay only in differentiated DC derived from either PB precursors or monocytes and in activated B cells. These RelB+ APC were potent stimulators of the MLR. The data indicate that RelB expression is regulated both transcriptionally and post-translationally in myeloid cells. Within the nucleus, RelB may specifically transactivate genes that are critical for APC function.
Resumo:
H-1 NMR spectra of the thyroid hormone thyroxine recorded at low temperature and high field show splitting into two peaks of the resonance due to the H2,6 protons of the inner (tyrosyl) ring. A single resonance is observed in 600 MHz spectra at temperatures above 185 K. An analysis of the line shape as a function of temperature shows that the coalescence phenomenon is due to an exchange process with a barrier of 37 kJ mol(-1). This is identical to the barrier for coalescence of the H2',6' protons of the outer (phenolic) ring reported previously for the thyroid hormones and their analogues. It is proposed that the separate peaks at low temperature are due to resonances for H2,6 in cisoid and transoid conformers which are populated in approximately equal populations. These two peaks are averaged resonances for the individual H2 and H6 protons. Conversion of cisoid to transoid forms can occur via rotation of either the alanyl side chain or the outer ring, from one face of the inner ring to the other. It is proposed that the latter process is the one responsible for the observed coalescence phenomenon. The barrier to rotation of the alanyl side chain is greater than or equal to 37 kJ mol(-1), which is significantly larger than has previously been reported for Csp(2)-Csp(3) bonds in other Ph-CH2-X systems. The recent crystal structure of a hormone agonist bound to the ligand-binding domain of the rat thyroid hormone receptor (Wagner et al. Nature 1995, 378, 690-697) shows the transoid form to be the bound conformation. The significant energy barrier to cisoid/transoid interconversion determined in the current study combined with the tight fit of the hormone to its receptor suggests that interconversion between the forms cannot occur at the receptor site but that selection for the preferred bound form occurs from the 50% population of the transoid form in solution.
Resumo:
Purposes: To evaluate the dosimetric effect of outpatient radioiodine therapy for thyroid cancer in members of a patient`s family and their living environment, when using iodine-131 doses reaching 7.4 GBq. The following parameters were thus defined: (a) whole-body radiation doses to caregivers, (b) the production of contaminated solid waste, and (c) radiation potential and surface contamination within patients` living quarters. Methods: In total, 100 patients were treated on an outpatient basis, taking into consideration their acceptable living conditions, interests, and willingness to comply with medical and radiation safety guidelines. Both the caregivers and the radiation dose potentiality inside patients` residences were monitored by using thermoluminescent dosimeters. Surface contamination and contaminated solid wastes were identified and measured with a Geiger-Muller detector. Results: A total of 90 monitored individuals received a mean dose of 0.27 (+/- 0.28) mSv, and the maximum dose registered was 1.6 mSv. The mean value for the potential dose within all living quarters was 0.31(+/- 0.34) mSv, and the mean value per monitored surface was 5.58 Bq/cm(2) for all the 1659 points measured. The overall production of contaminated solid wastes was at a low level, being about 3 times less than the exemption level indicated by the International Atomic Energy Agency. Conclusions: This study indicates that the treatment of thyroid cancer by applying radioiodine activities up to 7.4 GBq, on an outpatient basis, is a safe procedure, especially when supervised by qualified professionals. This alternative therapy should be a topic for careful discussion considering the high potential for reducing costs in healthcare and improving patient acceptance.
Resumo:
Nuclear fluorescence in keratinocytes is an occasional phenomenon, often present in autoimmune diseases, especially in connective-tissue disease (CTD); however, its clinical significance remains unclear. To investigate the profile of patients with positive nuclear staining on direct immunofluorescence (DIF) of skin samples. A retrospective analysis of 28 patient records from our immunodermatology laboratory was performed between May 2003 and June 2006. Inclusion criteria were the presence of autoantibodies (IgG, IgA or IgM) or complement (C3) binding keratinocyte nuclei on DIF. The most prevalent diseases related to the nuclear keratinocyte DIF staining were systemic lupus erythematosus (n = 9), mixed CTD (n = 3), overlap syndrome (n = 3), Sjogren`s syndrome (n = 1), and CREST (calcinosis, Raynaud`s phenomenon, oesophageal dysmotility, sclerodactyly and telangiectasia) syndrome (n = 1). Serum antinuclear antibody (ANA) was positive in 20 of 28 patients, with titres varying from 1 : 160 to 1 : 1280. Of the 20 patients with positive anti-nuclear antibodies (ANA), 17 were positive for anti-extractable nuclear antigen antibodies, 12 had anti-SSA/Ro, 11 had anti-SSB/La and 8 had anti-ribonucleoprotein. Eight patients were negative for ANA. Positive predictive value of in vivo ANA for systemic CTDs was 75%. The present data suggest that in vivo ANA evaluation is an additional and feasible auxiliary tool for diagnosing CTDs.
Resumo:
Dendritic cells (DC) are potent APCs that enter resting tissues as precursors and, after Ag exposure, differentiate and migrate to draining lymph nodes. The phenotype of RelB knockout mice implicates this member of the NF kappa B/Rel family in DC differentiation. To further elucidate the role of RelB in DC differentiation, mRNA, intracellular protein expression, and DNA binding activity of RelB were examined in immature and differentiated human DC, as well as other PB mononuclear cell populations. RelB protein and mRNA were detected constitutively in lymphocytes and in activated monocytes, differentiated DC, and monocyte-derived DC. Immunohistochemical staining demonstrated RelB within the differentiated lymph node interdigitating DC and follicular DC, but not undifferentiated DC in normal skin. Active nuclear RelB was detected by supershift assay only in differentiated DC derived from either PB precursors or monocytes and in activated B cells. These RelB(+) APC were potent stimulators of the MLR. The data indicate that RelB expression is regulated both transcriptionally and post-translationally in myeloid cells. Within the nucleus, RelB may specifically transactivate genes that are critical for APC function.
Resumo:
Cutaneous asthenia is a hereditary connective tissue disease, primarily of dogs and cats, resembling Ehlers-Danlos syndrome in man. Collagen dysplasia results in skin hyperextensibility, skin and vessel fragility, and poor wound healing. The purpose of this study was to describe the histological findings in a dog with a collagenopathy consistent with cutaneous asthenia. An 8-month-old crossbreed female dog presented with lacerations and numerous atrophic and irregular scars. The skin was hyperextensible and easily torn by the slightest trauma. Ultrastructurally, the dermis was comprised of elaunin and oxytalan microfibrils. These are immature fibres in which the fibrillar component is increased but elastin is reduced. Collagen fibres were profoundly disorganized. The fibrils had a highly irregular outline and a corroded appearance when viewed in cross-section, and were spiralled and fragmented in a longitudinal view. Dermal fibroblasts displayed a conspicuous thickening of the nuclear lamina. Nuclear lamins form a fibrous nucleoskeletal network of intermediate-sized filaments underlying the inner nuclear membrane. Mutations in lamins or lamin-associated proteins cause a myriad of genetic diseases collectively called laminopathies. Disruption of the nuclear lamina seems to affect chromatin organization and transcriptional regulation of gene expression. A common link among all laminopathies may be a failure of stem cells to regenerate mesenchymal tissue. This could contribute to the connective tissue dysplasia seen in cutaneous asthenia.