244 resultados para Nostoc sphaeroides Kutz


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemotaxis is one of the best characterised signalling systems in biology. It is the mechanism by which bacteria move towards optimal environments and is implicated in biofilm formation, pathogenesis and symbiosis. The properties of the bacterial chemosensory response have been described in detail for the single chemosensory pathway of Escherichia coli. We have characterised the properties of the chemosensory response of Rhodobacter sphaeroides, an -proteobacterium with multiple chemotaxis pathways, under two growth conditions allowing the effects of protein expression levels and cell architecture to be investigated. Using tethered cell assays we measured the responses of the system to step changes in concentration of the attractant propionate and show that, independently of the growth conditions, R. sphaeroides is chemotactic over at least five orders of magnitude and has a sensing profile following Weber’s law. Mathematical modelling also shows that, like E. coli, R. sphaeroides is capable of showing Fold-Change Detection (FCD). Our results indicate that general features of bacterial chemotaxis such as the range and sensitivity of detection, adaptation times, adherence to Weber’s law and the presence of FCD may be integral features of chemotaxis systems in general, regardless of network complexity, protein expression levels and cellular architecture across different species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Singlet oxygen ((1)O(2)) generation in the reaction centers (RCs) of Rhodobacter sphaeroides wild type was characterized by luminescent emission in the near infrared region (time resolved transients and emission spectra) and quantified to have quantum yield of 0.03 +/- 0.005. (1)O(2) emission was measured as a function of temperature, ascorbate, urea and potassium ferricyanide concentrations and as a function of incubation time in H(2)O: D(2)O mixtures. (1)O(2) was shown to be affected by the RC dynamics and to originate from the reaction of molecular oxygen with two sources of triplets: photoactive dimer formed by singlet-triplet mixing and bacteriopheophytin formed by direct photoexcitation and intersystem crossing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc homeostasis was investigated in Nostoc punctiforme. Cell tolerance to Zn2+ over 14 days showed that ZnCl2 levels above 22 µM significantly reduced cell viability. After 3 days in 22 µM ZnCl2, ca. 12% of the Zn2+ was in an EDTA-resistant component, suggesting an intracellular localization. Zinquin fluorescence was detected within cells exposed to concentrations up to 37 µM relative to 0 µM treatment. Radiolabeled 65Zn showed Zn2+ uptake increased over a 3-day period, while efflux occurred more rapidly within a 3-h time period. Four putative genes involved in Zn2+ uptake and efflux in N. punctiforme were identified: (i) the predicted Co/Zn/Cd cation transporter, putative CDF; (ii) the predicted divalent heavy-metal cation transporter, putative Zip; (iii) the ATPase component and Fe/Zn uptake regulation protein, putative Fur; and (iv) an ABC-type Mn/Zn transport system, putative zinc ZnuC, ZnuABC system component. Quantitative real-time PCR indicated the responsiveness of all four genes to 22 µM ZnCl2 within 3 h, followed by a reduction to below basal levels after 24 h by putative ZIP, ZnuC, and Fur and a reduction to below basal level after 72 h by putative CDF efflux gene. These results demonstrate differential regulation of zinc transporters over time, indicating a role for them in zinc homeostasis in N. punctiforme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trace metals are required for many cellular processes. The acquisition of trace elements from the environment includes a rapid adsorption of metals to the cell surface, followed by a slower internalization. We investigated the uptake of the trace elements Co2+, Cu2+, Mn2+, Ni2+, and Zn2+ and the non-essential divalent cation Cd2+ in the cyanobacterium Nostoc punctiforme. For each metal, a dose response study based on cell viability showed that the highest non-toxic concentrations were: 0.5 μM Cd2+, 2 μM Co2+, 0.5 μM Cu2+, 500 μM Mn2+, 1 μM Ni2+, and 18 μM Zn2+. Cells exposed to these non-toxic concentrations with combinations of Zn2+ and Cd2+, Zn2+ and Co2+, Zn2+ and Cu2+ or Zn2+ and Ni2+, had reduced growth in comparison to controls. Cells exposed to metal combinations with the addition of 500 μM Mn2+ showed similar growth compared to the untreated controls. Metal levels were measured after one and 72 h for whole cells and absorbed (EDTA-resistant) fractions and used to calculate differential uptake rates for each metal. The differences in binding and internalisation between different metals indicate different uptake processes exist for each metal. For each metal, competitive uptake experiments using 65Zn showed that after 72 h of exposure Zn2+ uptake was reduced by most metals particularly 0.5 μM Cd2+, while 2 μM Co2+ increased Zn2+ uptake. This study demonstrates that N. punctiforme discriminates between different metals and favourably substitutes their uptake to avoid the toxic effects of particular metals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ZIP family of metal transporters is involved in the transport of Zn2+ and other metal cations from the extracellular environment and/or organelles into the cytoplasm of prokaryotes, eukaryotes and archaeotes. In the present study, we identified twin ZIP transporters, Zip11 (Npun_F3111) and Zip63 (Npun_F2202) encoded within the genome of the filamentous cyanobacterium, Nostoc punctiforme PCC73120. Sequence-based analyses and structural predictions confirmed that these cyanobacterial transporters belong to the SLC39 subfamily of metal transporters. Quantitative real-time (QRT)-PCR analyses suggested that the enzymes encoded by zip11 and zip63 have a broad allocrite range that includes zinc as well as cadmium, cobalt, copper, manganese and nickel. Inactivation of either zip11 or zip63 via insertional mutagenesis in N. punctiforme resulted in reduced expression of both genes, highlighting a possible co-regulation mechanism. Uptake experiments using 65Zn demonstrated that both zip mutants had diminished zinc uptake capacity, with the deletion of zip11 resulting in the greatest overall reduction in 65Zn uptake. Over-expression of Zip11 and Zip63 in an E. coli mutant strain (ZupT736::kan) restored divalent metal cation uptake, providing further evidence that these transporters are involved in Zn uptake in N. punctiforme. Our findings show the functional role of these twin metal uptake transporters in N. punctiforme, which are independently expressed in the presence of an array of metals. Both Zip11 and Zip63 are required for the maintenance of homeostatic levels of intracellular zinc N. punctiforme, although Zip11 appears to be the primary zinc transporter in this cyanobacterium, both ZIP's may be part of a larger metal uptake system with shared regulatory elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal homoeostasis in cyanobacteria is based on uptake and export systems that are controlled by their own regulators. This study characterises the zinc uptake (Znu) system in Nostoc punctiforme. The system was found to comprise of three subunits in an ACB operon: a Zn2+-binding protein (ZnuA18), a transmembrane domain (ZnuB) and an ATPase (ZnuC). These proteins are encoded within the znu operon regulated by a zinc uptake transcription repressor (Zur). Interestingly, a second Zn2+-binding protein (ZnuA08) was also identified at a distal genomic location. Interactions between components of the ZnuACB system were investigated using knockouts of the individual genes. The znuA08-, znuA18-, znuB- and znuC- mutants displayed overall reduced znuACB transcript levels, suggesting that all system components are required for normal expression of znu genes. Zinc uptake assays in the Zn2+-binding protein mutant strains showed that the disruption of znuA18 had a greater negative effect on zinc uptake than disruption of znuA08. Complementation studies in Escherichia coli indicated that both znuA08 and znuA18 were able to restore zinc uptake in a znuA- mutant, with znuA18 permitting the highest zinc uptake rate. The N. punctiforme zur was also able to complement the E. coli zur- mutant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: To characterize genes involved in maintaining homeostatic levels of zinc in the cyanobacterium Nostoc punctiforme. METHODS AND RESULTS: Metal efflux transporters play a central role in maintaining homeostatic levels of trace elements such as zinc. Sequence analyses of the N. punctiforme genome identified two potential cation diffusion facilitator (CDF) metal efflux transporters, Npun_F0707 (Cdf31) and Npun_F1794 (Cdf33). Deletion of either Cdf31or Cdf33 resulted in increased zinc retention over 3 h. Interestingly, Cdf31(-) and Cdf33(-) mutants showed no change in sensitivity to zinc exposure in comparison with the wild type, suggesting some compensatory capacity for the loss of each other. Using qRT-PCR, a possible interaction was observed between the two cdf's, where the Cdf31(-) mutant had a more profound effect on cdf33 expression than Cdf33(-) did on cdf31. Over-expression of Cdf31 and Cdf33 in ZntA(-) - and ZitB(-) -deficient Escherichia coli revealed function similarities between the ZntA and ZitB of E. coli and the cyanobacterial transporters. CONCLUSIONS: The data presented shed light on the function of two important transporters that regulate zinc homeostasis in N. punctiforme. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows for the first time the functional characterization of two cyanobacterial zinc efflux proteins belonging to the CDF family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of cellular response to zinc exposure provides insights into how organisms maintain homeostatic levels of zinc that are essential, while avoiding potentially toxic cytosolic levels. Using the cyanobacterium Nostoc punctiforme as a model, qRT-PCR analyses established a profile of the changes in relative mRNA levels of the ZntA-like zinc efflux transporter NpunR4017 in response to extracellular zinc. In cells treated with 18 μM of zinc for 1 h, NpunR4017 mRNA levels increased by up to 1300 % above basal levels. The accumulation and retention of radiolabelled (65)Zn by NpunR4107-deficient and overexpressing strains were compared to wild-type levels. Disruption of NpunR4017 resulted in a significant increase in zinc accumulation up to 24 % greater than the wild type, while cells overexpressing NpunR4107 accumulated 22 % less than the wild type. Accumulation of (65)Zn in ZntA(-) Escherichia coli overexpressing NpunR4017 was reduced by up to 21 %, indicating the capacity for NpunR4017 to compensate for the loss of ZntA. These findings establish the newly identified NpunR4017 as a zinc efflux transporter and a key transporter for maintaining zinc homeostasis in N. punctiforme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe and illustrate Paepalanthus sphaeroides (Eriocaulaceae, Paepalanthoideae) from the Mantiqueira Range in South-eastern Brazil and compare it with the morphologically most similar species: Paepalanthus aequalis and Paepalanthus eriophaeus. Paepalanthus sphaeroides has unique membranaceous sheaths tightly adpressed to the scapes, patent involucral bracts slightly surpassing the capitula, and sepals of the staminate flowers fused from the base to the middle as distinctive characteristics. Comments on morphological variation, geographical distribution, ecology, conservation status, as well as a distribution map, line drawings, and photos are provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Universidad de Las Palmas de Gran Canaria. Suficiencia investigadora

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhodobacter sphaeroides 2.4.1 is a Gram negative facultative photoheterotrophic bacterium that has been shown to have an N-acyl homoserine lactone-based quorum sensing system called cer for c&barbelow;ommunity e&barbelow;scape r&barbelow;esponse. The cer ORFs are cerR, the transcriptional regulator, cerI, the autoinducer synthase and cerA , whose function is unknown. The autoinducer molecule, 7,8- cis-N-(tetradecenoyl) homoserine lactone, has been characterized. The objective of this study was to identify an environmental stimulus that influences the regulation of cerRAI and, to characterize transcription of the cer operon. ^ A cerR::lacZ transcriptional fusion was made and β-Galactosidase assays were performed in R. sphaeroides 2.4.1 strains, wild type, AP3 (CerI−) and AP4 (CerR−). The cerR::lacZ β-Galactosidase assays were used as an initial survey of the mode of regulation of the Cer system. A cerA::lacZ translational fusion was created and was used to show that cerA can be translated. The presence of 7,8-cis-N-(tetradecenoyl) homoserine lactone was detected from R. sphaeroides strains wild type and AP4 (CerR−) using a lasR::lacZ translational fusion autoinducer bioassay. The cerR::lacZ transcriptional fusion in R. sphaeroides 2.4.1 wild type was tested under different environmental stimuli, such as various carbon sources, oxygen tensions, light intensities and culture media to determine if they influence transcription of the cer ORFs. Although lacZ assay data implicated high light intensity at 100 W/m2 to stimulate cer transcription, quantitative Northern RNA data of the cerR transcript showed that low light intensity at 3 W/m2 is at least one environmental stimulus that induces cer transcription. This finding was supported by DNA microarray analysis. Northern analysis of the cerRAI transcript provided evidence that the cer ORFs are co-transcribed, and that the cer operon contains two additional genes. Bioinformatics was used to identify genes that may be regulated by the Cer system by identifying putative lux box homologue sequences in the presumed promoter region of these genes. Genes that were identified were fliQ, celB and calsymin, all implicated in interacting with plants. Primer extension was used to help localize cis-elements in the promoter region. The cerR::lacZ transcriptional fusion was monitored in a subset of different global DNA binding transcriptional regulator mutant strains of R. sphaeroides 2.4.1. Those regulators involved in maintaining an anaerobic photosynthetic lifestyle appeared to have an effect. Collectively, the data imply that R. sphaeroides 2.4.1 activates the Cer system when grown anaerobic photosynthetically at low light intensity, 3 W/m2, and it may be involved in an interaction with plants. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of desiccation on photochemical processes and nitrogenase activity were evaluated in Nostoc commune s.l. colonies in situ from a wet thufur meadow at Petuniabukta, Billefjorden, Central Svalbard, during the 2009 arctic summer. The colonies were collected in the fully hydrated state, and were subjected to slow desiccation at ambient temperatures (5 - 8°C) and low light (30 - 80 µmol/m**2/s). For each colony the weight, area, photochemical performance, and nitrogenase activity were determined at the beginning, as well as on every day during the first four days of the experiment; thereafter, on every second day until desiccation was complete. The photochemical performance was evaluated from variable chlorophyll fluorescence parameters (FV/FM, Phi(PSII) , qP, and NPQ), and the nitrogenase activity was estimated by an acetylene-ethylene reduction assay. A significant decrease in the photochemically active area was recorded from the third day, when the colony had lost approximately 40% of its original weight indicating some changes in the extracellular matrix, and stopped on the 14th to 18th day. No effects of the desiccation on the main photochemical parameters (FV/FM, Phi(PSII), qP) were observed up to the sixth to eighth days of desiccation. Slightly lower values of FV/FM and Phi(PSII) recorded in fully-hydrated colonies could be caused by impaired diffusion of CO2 into cells. The steep reduction of photochemical activity occurred between the eighth and tenth day of the experiment, when the colony had lost approximately 80% of its fully-hydrated weight. The nitrogenase activity was highest on the first day, probably due to improved diffusion of N2 into cells, then declined, but was detectable until the sixth day of the experiment. Since Nostoc commune s.l. colonies were capable of photosynthesis and nitrogen fixation to the level of ca. 60% of its fully-hydrated weight, even partly-hydrated colonies contribute substantially to carbon and nitrogen cycling in the High Arctic wet meadow tundra ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structures of cytochrome c oxidase from both bovine and Paracoccus denitrificans reveal two putative proton input channels that connect the heme-copper center, where dioxygen is reduced, to the internal aqueous phase. In this work we have examined the role of these two channels, looking at the effects of site-directed mutations of residues observed in each of the channels of the cytochrome c oxidase from Rhodobacter sphaeroides. A photoelectric technique was used to monitor the time-resolved electrogenic proton transfer steps associated with the photo-induced reduction of the ferryl-oxo form of heme a3 (Fe4+ = O2−) to the oxidized form (Fe3+OH−). This redox step requires the delivery of a “chemical” H+ to protonate the reduced oxygen atom and is also coupled to proton pumping. It is found that mutations in the K channel (K362M and T359A) have virtually no effect on the ferryl-oxo-to-oxidized (F-to-Ox) transition, although steady-state turnover is severely limited. In contrast, electrogenic proton transfer at this step is strongly suppressed by mutations in the D channel. The results strongly suggest that the functional roles of the two channels are not the separate delivery of chemical or pumped protons, as proposed recently [Iwata, S., Ostermeier, C., Ludwig, B. & Michel, H. (1995) Nature (London) 376, 660–669]. The D channel is likely to be involved in the uptake of both “chemical” and “pumped” protons in the F-to-Ox transition, whereas the K channel is probably idle at this partial reaction and is likely to be used for loading the enzyme with protons at some earlier steps of the catalytic cycle. This conclusion agrees with different redox states of heme a3 in the K362M and E286Q mutants under aerobic steady-state turnover conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of proton transfer from the bulk into the membrane protein interior was studied. The light-induced reduction of a bound ubiquinone molecule QB by the photosynthetic reaction center is accompanied by proton trapping. We used kinetic spectroscopy to measure (i) the electron transfer to QB (at 450 nm), (ii) the electrogenic proton delivery from the surface to the QB site (by electrochromic carotenoid response at 524 nm), and (iii) the disappearance of protons from the bulk solution (by pH indicators). The electron transfer to QB− and the proton-related electrogenesis proceeded with the same time constant of ≈100 μs (at pH 6.2), whereas the alkalinization in the bulk was distinctly delayed (τ ≈ 400 μs). We investigated the latter reaction as a function of the pH indicator concentration, the added pH buffers, and the temperature. The results led us to the following conclusions: (i) proton transfer from the surface-located acidic groups into the QB site followed the reduction of QB without measurable delay; (ii) the reprotonation of these surface groups by pH indicators and hydronium ions was impeded, supposedly, because of their slow diffusion in the surface water layer; and (iii) as a result, the protons were slowly donated by neutral water to refill the proton vacancies at the surface. It is conceivable that the same mechanism accounts for the delayed relaxation of the surface pH changes into the bulk observed previously with bacteriorhodopsin membranes and thylakoids. Concerning the coupling between proton pumps in bioenergetic membranes, our results imply a tendency for the transient confinement of protons at the membrane surface.