949 resultados para North-east India


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coccolithophores are the largest source of calcium carbonate in the oceans and are considered to play an important role in oceanic carbon cycles. Current methods to detect the presence of coccolithophore blooms from Earth observation data often produce high numbers of false positives in shelf seas and coastal zones due to the spectral similarity between coccolithophores and other suspended particulates. Current methods are therefore unable to characterise the bloom events in shelf seas and coastal zones, despite the importance of these phytoplankton in the global carbon cycle. A novel approach to detect the presence of coccolithophore blooms from Earth observation data is presented. The method builds upon previous optical work and uses a statistical framework to combine spectral, spatial and temporal information to produce maps of coccolithophore bloom extent. Validation and verification results for an area of the north east Atlantic are presented using an in situ database (N = 432) and all available SeaWiFS data for 2003 and 2004. Verification results show that the approach produces a temporal seasonal signal consistent with biological studies of these phytoplankton. Validation using the in situ coccolithophore cell count database shows a high correct recognition rate of 80% and a low false-positive rate of 0.14 (in comparison to 63% and 0.34 respectively for the established, purely spectral approach). To guide its broader use, a full sensitivity analysis for the algorithm parameters is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I. 430 plankton samples, which were taken by several herring drifters using the Continuous Plankton Recorder in the Shields fishing area during the summer seasons of 1931 to 1933, are analysed to show the main changes in the plankton during those seasons. 2. A comparison is made between the proportions of the different zooplankton organisms found in the plankton and the proportions of these recorded by Savage (1937) in the stomachs of herring obtained from drifters working in the same area and during the same time. The comparisons are made for 29 ten-day periods in the seasons 1931 to 1933, and in addition, for 6 ten-day periods relating to a single drifter which obtained both plankton and stomach samples at the same time in 1932. 3. The comparisons in 2 provide evidence that the herring feeds by selecting certain organisms by individual acts of capture and not by swimming open-mouthed to strain out the plankton indiscriminately: (a) Calanus and Temora in the stomachs either correspond fairly closely to the proportions in the plankton or they may be in very much higher proportions. The latter is always true regarding Anomalocera. (b) Acartia, Oithona, Cladocera and Lamellibranch larvae are always in larger proportions in the plankton than in the stomachs; this applies also to Centropages with two insignificant exceptions. (c) There is a close correspondence between the numbers of Limacina and Sagitta in the plankton and stomachs in the latter half of the 1931 season, but not during 1932 and 1933, when the numbers in the stomachs were insignificant ; during the former period there was a great scarcity of Calanus in the plankton.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the mechanisms linking oceanographic processes and marine vertebrate habitat use is critical to effective management of populations of conservation concern. The basking shark Cetorhinus maximus has been shown to associate with oceanographic fronts – physical interfaces at the transitions between water masses – to exploit foraging opportunities resulting from aggregation of zooplankton. However, the scale, significance and variability of these observed associations have not yet been established. Here, we quantify the influence of mesoscale (10s – 100s km) frontal activity on habitat use over timescales of weeks to months. We use animal-mounted archival tracking with composite front mapping via Earth Observation (EO) remote sensing to provide an oceanographic context to individual shark movements. We investigate levels of association with fronts occurring over two spatio-temporal scales, (i) broad-scale seasonally persistent frontal zones and (ii) contemporaneous mesoscale thermal and chl-a fronts. Using random walk simulations and logistic regression within an iterative generalised linear mixed modelling (GLMM) framework, we find that seasonal front frequency is a significant predictor of shark presence. Temporally-matched oceanographic metrics also indicate that sharks demonstrate a preference for productive regions, and associate with contemporaneous thermal and chl-a fronts more frequently than could be expected at random. Moreover, we highlight the importance of cross-frontal temperature change and persistence, which appear to interact to affect the degree of prey aggregation along thermal fronts. These insights have clear implications for understanding the preferred habitats of basking sharks in the context of anthropogenic threat management and marine spatial planning in the northeast Atlantic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the mechanisms linking oceanographic processes and marine vertebrate habitat use is critical to effective management of populations of conservation concern. The basking shark Cetorhinus maximus has been shown to associate with oceanographic fronts – physical interfaces at the transitions between water masses – to exploit foraging opportunities resulting from aggregation of zooplankton. However, the scale, significance and variability of these observed associations have not yet been established. Here, we quantify the influence of mesoscale (10s – 100s km) frontal activity on habitat use over timescales of weeks to months. We use animal-mounted archival tracking with composite front mapping via Earth Observation (EO) remote sensing to provide an oceanographic context to individual shark movements. We investigate levels of association with fronts occurring over two spatio-temporal scales, (i) broad-scale seasonally persistent frontal zones and (ii) contemporaneous mesoscale thermal and chl-a fronts. Using random walk simulations and logistic regression within an iterative generalised linear mixed modelling (GLMM) framework, we find that seasonal front frequency is a significant predictor of shark presence. Temporally-matched oceanographic metrics also indicate that sharks demonstrate a preference for productive regions, and associate with contemporaneous thermal and chl-a fronts more frequently than could be expected at random. Moreover, we highlight the importance of cross-frontal temperature change and persistence, which appear to interact to affect the degree of prey aggregation along thermal fronts. These insights have clear implications for understanding the preferred habitats of basking sharks in the context of anthropogenic threat management and marine spatial planning in the northeast Atlantic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the mechanisms linking oceanographic processes and marine vertebrate habitat use is critical to effective management of populations of conservation concern. The basking shark Cetorhinus maximus has been shown to associate with oceanographic fronts – physical interfaces at the transitions between water masses – to exploit foraging opportunities resulting from aggregation of zooplankton. However, the scale, significance and variability of these observed associations have not yet been established. Here, we quantify the influence of mesoscale (10s – 100s km) frontal activity on habitat use over timescales of weeks to months. We use animal-mounted archival tracking with composite front mapping via Earth Observation (EO) remote sensing to provide an oceanographic context to individual shark movements. We investigate levels of association with fronts occurring over two spatio-temporal scales, (i) broad-scale seasonally persistent frontal zones and (ii) contemporaneous mesoscale thermal and chl-a fronts. Using random walk simulations and logistic regression within an iterative generalised linear mixed modelling (GLMM) framework, we find that seasonal front frequency is a significant predictor of shark presence. Temporally-matched oceanographic metrics also indicate that sharks demonstrate a preference for productive regions, and associate with contemporaneous thermal and chl-a fronts more frequently than could be expected at random. Moreover, we highlight the importance of cross-frontal temperature change and persistence, which appear to interact to affect the degree of prey aggregation along thermal fronts. These insights have clear implications for understanding the preferred habitats of basking sharks in the context of anthropogenic threat management and marine spatial planning in the northeast Atlantic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of different factors (spawning biomass, environmental conditions) on recruitment is a subject of great importance in the management of fisheries, recovery plans and scenario exploration. In this study, recently proposed supervised classification techniques, tested by the machine-learning community, are applied to forecast the recruitment of seven fish species of North East Atlantic (anchovy, sardine, mackerel, horse mackerel, hake, blue whiting and albacore), using spawning, environmental and climatic data. In addition, the use of the probabilistic flexible naive Bayes classifier (FNBC) is proposed as modelling approach in order to reduce uncertainty for fisheries management purposes. Those improvements aim is to improve probability estimations of each possible outcome (low, medium and high recruitment) based in kernel density estimation, which is crucial for informed management decision making with high uncertainty. Finally, a comparison between goodness-of-fit and generalization power is provided, in order to assess the reliability of the final forecasting models. It is found that in most cases the proposed methodology provides useful information for management whereas the case of horse mackerel is an example of the limitations of the approach. The proposed improvements allow for a better probabilistic estimation of the different scenarios, i.e. to reduce the uncertainty in the provided forecasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diatom carbon export enhanced by silicate upwelling in the northeast Atlantic John T. Allen1,2, Louise Brown1,3, Richard Sanders1, C. Mark Moore1, Alexander Mustard1, Sophie Fielding1, Mike Lucas1, Michel Rixen4, Graham Savidge5, Stephanie Henson1 and Dan Mayor1 Top of pageDiatoms are unicellular or chain-forming phytoplankton that use silicon (Si) in cell wall construction. Their survival during periods of apparent nutrient exhaustion enhances carbon sequestration in frontal regions of the northern North Atlantic. These regions may therefore have a more important role in the 'biological pump' than they have previously been attributed1, but how this is achieved is unknown. Diatom growth depends on silicate availability, in addition to nitrate and phosphate2, 3, but northern Atlantic waters are richer in nitrate than silicate4. Following the spring stratification, diatoms are the first phytoplankton to bloom2, 5. Once silicate is exhausted, diatom blooms subside in a major export event6, 7. Here we show that, with nitrate still available for new production, the diatom bloom is prolonged where there is a periodic supply of new silicate: specifically, diatoms thrive by 'mining' deep-water silicate brought to the surface by an unstable ocean front. The mechanism we present here is not limited to silicate fertilization; similar mechanisms could support nitrate-, phosphate- or iron-limited frontal regions in oceans elsewhere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A full understanding of the biogeochemical cycling of silica in the North Atlantic is hampered by a lack of estimates of silica uptake by phytoplankton. We applied the ${}^{32}\text{Si}$ radiotracer incubation technique to determine silica uptake rates at 10 sites during the UK-(Natural Environment Research Council) Faroes-Iceland-Scotland hydrographic and environmental survey (FISHES) cruise in the Northeast Atlantic, May 2001. Column silica uptake rates ranged between 6 and 166 mmol Si $\text{m}^{-2}\ \text{d}^{-1}$; this data set was integrated with concurrent hydrographic, chemical, and primary productivity data to explain these changes in silica uptake in terms of the progress of the spring bloom. In order to interpret data covering a relatively large spatial and temporal scale, we used mean photic zone silica concentration as a proxy time-series measure of diatom bloom progression. Both absolute and specific silica uptake rates were highest at dissolved silica concentrations >2 mmol $\text{L}^{-1}$. Si and C uptake were vertically decoupled at those stations where surface silica was strongly depleted. Absolute primary productivity was not strongly correlated with dissolved silica concentrations, owing to either exhaustion of silica at diatom-dominated stations or to dominance of the community by other phytoplankton. Silica uptake as a function of increased substrate concentration was linear up to 25 $\mu \text{mol}\ \text{L}^{-1}$; we consider some possible reasons for the nonhyperbolic response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two depositional models to account for Holocene gravel-dominated beach ridges covered by dunes, occurring on the northern coast of Ireland, are considered in the light of infrared-stimulated luminescence ages of sand units within beach ridges, and 14C ages from organic horizons in dunes. A new chronostratigraphy obtained from prograded beach ridges with covering dunes at Murlough, north-east Ireland, supports a model of mesoscale alternating sediment decoupling (ASD) on the upper beach, rather than macroscale sequential sediment sourcing to account for prograded beach ridges and covering dunes. The ASD model specifies storm or fair-weather sand beach ridges forming at high-tide positions (on an annual basis at minimum), which acted as deflationary sources for landward foredune development. Only a limited number of such late-Holocene beach ridges survive in the observed prograded series. Beach ridges only survive when capped by storm-generated gravel beaches that are deposited on a mesoscale time spacing of 50–130 years. The morphodynamic shift from a dissipative beach face for dune formation to a reflective beach face for gravel capping appears to be controlled by the beach sand volume falling to a level where reflective conditions can prevail. Sediment volume entering the beach is thought to have fluctuated as a function of a forced regression associated with the falling sea level from the mid-Holocene highstand (ca. 6000 cal. yr BP) identified in north-east Ireland. The prograded beach ridges dated at ca. 3000 to 2000 cal. yr BP indicate that the Holocene highstand’s regressive phase may have lasted longer than previously specified.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The successful career of Dean Mahomet (1759-1851) as a migrant from India to Ireland (and later, England) has led to scholarly and popular interest in his work. His Travels through several parts of India in the Service of the Honourable East India Company (1794) published by subscription in Cork is reputedly the first English book by an Indian, and has been seen to counterbalance the many accounts of India by western travellers, and to assert, in autobiographical form, his identity as an Indian in 1790s Ireland. My paper analyses this text in relation to moral and economic criticisms of the East India Company in the eighteenth century, and in particular to legislation of 1793 which defined the role of the Company in Ireland’s trade with the east. These aspects of colonial politics involving Ireland and India as subject nations of Britain are shown to shape Mahomet’s discursive strategies and the complex identity produced in his text.