988 resultados para North-Watch programme


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dataset is based on samples collected in the spring of 2002 in the Western Black Sea in front of Bulgaria coast. The whole dataset is composed of 76 samples (from 27 stations of National Monitoring Grid) with data of mesozooplankton species composition abundance and biomass. Sampling on zooplankton was performed from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within the framework of the EU-funded BENGAL programme, the effects of seasonality on biogenic silica early diagenesis have been studied at the Porcupine Abyssal Plain (PAP), an abyssal locality located in the northeast Atlantic Ocean. Nine cruises were carried out between August 1996 and August 1998. Silicic acid (DSi) increased downward from 46.2 to 213 µM (mean of 27 profiles). Biogenic silica (BSi) decreased from ca. 2% near the sediment-water interface to <1% at depth. Benthic silicic acid fluxes as measured from benthic chambers were close to those estimated from non-linear DSi porewater gradients. Some 90% of the dissolution occurred within the top 5.5 cm of the sediment column, rather than at the sediment-water interface and the annual DSi efflux was close to 0.057 mol Si/m**2/yr. Biogenic silica accumulation was close to 0.008 mol Si/m**2/yr and the annual opal delivery reconstructed from sedimentary fluxes, assuming steady state, was 0.065 mol Si/m**2/yr. This is in good agreement with the mean annual opal flux determined from sediment trap samples, averaged over the last decade (0.062 mol Si/m**2/yr). Thus ca. 12% of the opal flux delivered to the seafloor get preserved in the sediments. A simple comparison between the sedimentation rate and the dissolution rate in the uppermost 5.5 cm of the sediment column suggests that there should be no accumulation of opal in PAP sediments. However, by combining the BENGAL high sampling frequency with our experimental results on BSi dissolution, we conclude that non-steady state processes associated with the seasonal deposition of fresh biogenic particles may well play a fundamental role in the preservation of BSi in these sediments. This comes about though the way seasonal variability affects the quality of the biogenic matter reaching the seafloor. Hence it influences the intrinsic dissolution properties of the opal at the seafloor and also the part played by non-local mixing events by ensuring the rapid transport of BSi particles deep into the sediment to where saturation is reached.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dataset is based on samples collected in the autumn of 2001 in the Western Black Sea in front of Bulgaria coast. The whole dataset is composed of 42 samples (from 19 stations of National Monitoring Grid) with data of mesozooplankton species composition abundance and biomass. Samples were collected in the layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The "Hydroblack91" dataset is based on samples collected in the summer of 1991 and covers part of North-Western in front of Romanian coast and Western Black Sea (Bulgarian coasts) (between 43°30' - 42°10' N latitude and 28°40'- 31°45' E longitude). Mesozooplankton sampling was undertaken at 20 stations. The whole dataset is composed of 72 samples with data of zooplankton species composition, abundance and biomass. Samples were collected in discrete layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected materia was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). The biomass was estimated as wet weight by Petipa, 1959 (based on species specific wet weight). Wet weight values were transformed to dry weight using the equation DW=0.16*WW as suggested by Vinogradov & Shushkina, 1987. Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). The biomass was estimated as wet weight by Petipa, 1959 ussing standard average weight of each species in mg/m3. WW were converted to DW by equation DW=0.16*WW (Vinogradov ME, Sushkina EA, 1987).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subtropical oceanic gyres are the most extensive biomes on Earth where SAR11 and Prochlorococcus bacterioplankton numerically dominate the surface waters depleted in inorganic macronutrients as well as in dissolved organic matter. In such nutrient poor conditions bacterioplankton could become photoheterotrophic. We assessed the photoheterotrophy of the key microbial taxa in the North Atlantic oligotrophic gyre and adjacent regions. The experimental work was performed on board the Royal Research Ship James Cook (cruise no. JC53, October-November 2010) as part of the Atlantic Meridional Transect programme, and on board the Royal Research Ship Discovery (cruise no. D369, August-September 2011). At each station, samples were collected from 20m depth with a sampling rosette of 20-l Niskin bottles mounted on aconductivity-temperature-depth profiler. Samples were collected in 1 l thermos flasks (washed with10% v/v HCl) in the dark and processed immediately. Depth of 20m was chosen because it represents the mixed layer and it was the shallowest depth unaffected by the ship's movement, including thrusting, that could artificially affect microbial metabolism in nutrient-depleted stratified surfacewaters. Molecular identification of flow-sorted cells CARD-FISH was performed on flow-sorted cells to identify the groups for which uptake rates were measured. High nucleic acid-containing bacteria, based on SYBR Green DNA staining, that had virtually undetectable chlorophyll autofluorescence, were phylogenetically affiliated with Prochlorococcus,in agreement with our previously reported results (Zubkov et al., 2007; doi:10.1111/j.1462-2920.2007.01324.x).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The location of the La Galite Archipelago on the Internal/External Zones of the Maghrebian Chain holds strong interest for the reconstruction of the geodynamic evolution of the Mesomediterranean Microplate-Africa Plate Boundary Zone. New stratigraphic and petrographic data on sedimentary successions intruded upon by plutonic rocks enabled a better definition of the palaeogeographic and palaeotectonic evolutionary model of the area during the early-middle Miocene. The lower Miocene sedimentary units (La Galite Flysch and Numidian-like Flysch) belong to the Mauritanian (internal) and Massylian (external) sub-Domains of the Maghrebian Chain, respectively. These deposits are related to a typical syn-orogenic deposition in the Maghrebian Flysch Basin Domain, successively backthrusted above the internal units. The backthrusting age is post-Burdigalian (probably Langhian-Serravallian) and the compressional phase represents the last stage in the building of the accretionary wedge of the Maghrebian orogen. These flysch units may be co-relatable to the similar well-known formations along the Maghrebian and Betic Chains. The emplacement of potassic peraluminous magmatism, caused local metamorphism in the Late Serravallian-Early Tortonian (14–10 Ma), after the last compressional phase (backthrusting), during an extensional tectonic event. This extensional phase is probably due to the opening of a slab break-off in the deep subduction system. La Galite Archipelago represents a portion of the Maghrebian Flysch Basin tectonically emplaced above the southern margin of the “Mesomediterranean Microplate” which separated the Piemontese-Ligurian Ocean from a southern oceanic branch of the Tethys (i.e. the Maghrebian Flysch Basin). The possible presence of an imbricate thrust system between La Galite Archipelago and northern Tunisia may be useful to exclude the petroleum exploration from the deformed sectors of the offshore area considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Material and data were collected at 41 sites in the subpolar North Atlantic Ocean between Scotland and Newfoundland, during the RRS CharlesDarwin CD159 cruise in July 2004 (McCave, 2005). Sites were selected to reflect the major inputs of water that becomes the North Atlantic Deep Water (NADW); the Iceland-Scotland Overflow Water (ISOW), the Denmark Strait Overflow Water (DSOW) and the Labrador Sea Water (LSW). Areas cored were the south Iceland Rise, SE Greenland slope/rise and Eirik Drift, and the Labrador margin. A total of 29 box cores, 19 piston cores, 6 kasten cores, 9 short gravity cores and 20 CTD casts as well as 28 surface water samples were collected during the cruise. Here we present sediment core-top sample ages. The cores were sampled at 1 or 0.5 cm intervals and we used the top 1 or 2 cm, depending on availability of foraminifera in the samples. Sediment samples were disaggregated on an end-over-end wheel, wet sieved at >63 um, and dry sieved to 63-150 and >150 um. Accelerator Mass Spectrometer (AMS) radiocarbon dating was done for each core top based on between 900-1600 monospecific planktonic foraminifera (Globigerina bulloides or Neogloboquadrina pachyderma (sinistral)). All dates were of modern or late Holocene age except site RAPID-08-5B (9806 ± 38 uncorrected 14C years BP) and site RAPID-14-10B (11543 ± 40 uncorrected 14C years BP). The >150 um fraction was split until approximately 300 foraminifera remained and counted for number of lithic grains, benthic foraminifera, planktonic foraminifera and foraminifera fragments. In all but the shallowest sample (Greenland rise, 761m water depth) benthic foraminifera constituted less than 2% of the total >150 um fraction of the sample.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past two decades, the Democratic People's Republic of Korea has allegedly developed nuclear energy while suffering near collapse caused by catastrophic economic policies. This article presents an evaluation of North Korea's contemporary energy policies and suggests that despite retaining communist ideals and "Chu'che" policies, North Korea has slowly started to modernise its energy sector and recognises the necessity to start engaging with the international community. While it is argued that Pyongyang's newfound concerns for sustainable development, equity and the environment are a welcomed departure from its usual belligerent rhetoric and present a number of exciting engagement opportunities, the regime has not abandoned its nuclear energy programme.