63 resultados para Nonlocality
An imaginary potential with universal normalization for dissipative processes in heavy-ion reactions
Resumo:
In this work we present new coupled channel calculations with the Sao Paulo potential (SPP) as the bare interaction, and an imaginary potential with system and energy independent normalization that has been developed to take into account dissipative processes in heavy-ion reactions. This imaginary potential is based on high-energy nucleon interaction in nuclear medium. Our theoretical predictions for energies up to approximate to 100 MeV/nucleon agree very well with the experimental data for the p, n + nucleus, (16)O + (27)Al, (16)O + (60)Ni, (58)Ni + (124)Sn, and weakly bound projectile (7)Li + (120)Sn systems. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this work, we investigate the limitation of the use of strength coefficients on double folding potentials to study the presence of the threshold anomaly in the elastic scattering of halo nuclei at near barrier energies. For this purpose, elastic angular distributions and reaction cross sections for the He-6 on Bi-209 are studied. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
We consider vortices in the nonlocal two-dimensional Gross-Pitaevskii equation with the interaction potential having Lorentz-shaped dependence on the relative momentum. It is shown that in the Fourier series expansion with respect to the polar angle, the unstable modes of the axial n-fold vortex have orbital numbers l satisfying 0 < \l\ < 2\n\, as in the local model. Numerical simulations show that nonlocality slightly decreases the threshold rotation frequency above which the nonvortex state ceases to be the global energy minimum and decreases the frequency of the anomalous mode of the 1-vortex. In the case of higher axial vortices, nonlocality leads to instability against splitting with the creation of antivortices and gives rise to additional anomalous modes with higher orbital numbers. Despite new instability channels with the creation of antivortices, for a stationary solution comprised of vortices and antivortices there always exists another vortex solution, composed solely of vortices, with the same total vorticity but with a lower energy.
Resumo:
The behavior of the transition pion form factor for processes gamma (*)gamma --> pi(0) and gamma (*)gamma (*) --> pi(0) at large values of space-like photon momenta is estimated within the nonlocal covariant quark-pion model. It is shown that, in general, the coefficient of the leading asymptotic term depends dynamically on the ratio of the constituent quark mass and the average virtuality of quarks in the vacuum and kinematically on the ratio of photon virtualities. The kinematic dependence of the transition form factor allows us to obtain the relation between the pion light-cone distribution amplitude and the quark-pion vertex function. The dynamic dependence indicates that the transition form factor gamma (*)gamma -->, pi(0) at high momentum transfers is very sensitive to the nonlocality size of nonperturbative fluctuations in the QCD vacuum. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
The covariant quark model of the pion based on the effective nonlocal quark-hadron Lagrangian involving nonlocality induced by instanton fluctuations of the QCD vacuum is reviewed. Explicit gauge invariant formalism allows us to construct the conserved vector and axial currents and to demonstrate their consistency with the Ward-Takahashi identities and low-energy theorems. The spontaneous breaking of chiral symmetry results in the dynamic quark mass and the vertex of the quark-pion interaction, both momentum-dependent. The parameters of the instanton vacuum, the average size of the instantons, and the effective quark mass are expressed in terms of the vacuum expectation values of the lowest dimension quark-gluon operators and low-energy pion observables. The transition pion form factor for the processes gamma*gamma --> pi (0) and gamma*gamma* --> pi (0) is analyzed in detail. The kinematic dependence of the transition form factor at high momentum transfers allows one to determine the relationship between the light-cone amplitude of the quark distribution in the pion and the quark-pion vertex function. Its dynamic dependence implies that the transition form factor gamma*gamma --> pi (0) at high momentum transfers is acutely sensitive to the size of the nonlocality of nonperturbative fluctuations in the QCD vacuum. In the leading twist, the distribution amplitude and the distribution function of the valence quarks in the pion are calculated at a low normalization point of the order of the inverse average instanton size rho (-1)(c). The QCD results are evolved to higher momentum transfers and are in reasonable agreement with available experimental data on the pion structure.
Resumo:
We give general expressions for the vector asymmetry in the angular distribution of protons in the nonmesonic weak decay of polarized hypernuclei. From these we derive an explicit expression for the calculation of the asymmetry parameter, a(Lambda), which is applicable to the specific cases of He-5(Lambda) and C-12(Lambda) described within the extreme shell model. In contrast to the approximate formula widely used in the literature, it includes the effects of three-body kinematics in the final states of the decay and correctly treats the contribution of transitions originating from single-proton states beyond the s-shell. This expression is then used for the corresponding numerical computation of a(Lambda) within several one-meson-exchange models. Besides the strictly local approximation usually adopted for the transition potential, we also consider the addition of the first-order nonlocality terms. We find values for a(Lambda) ranging from -0.62 to -0.24, in qualitative agreement with other theoretical estimates but in contradiction with some recent experimental determinations.
Resumo:
A quantum treatment for nonlocal factorizable potentials is presented in which the Weyl-Wiper quantum phase space description plays an essential role. The nonlocality is treated in an approximated form and allows for a Feynman propagator that can be handled in standard way. The semi-classical limit of the propagator is obtained which permits the calculation of the transmission factor in quantum tunnelling processes. An application in nuclear physics is also discussed.
Resumo:
Effects of the nonlocality of factorizable potentials are taken into account in the calculation of nucleus-nucleus fusion cross section through an effective mass approach. This cross section makes use of the tunneling factor calculated for the nonlocal barrier, without the explicit introduction of any result coming from coupled channel calculation, besides the approximations of Hill-Wheeler and Wong. Its new expression embodies the nonlocal effects in a factor which redefines the local potential barrier curvature. Applications to different systems, namely O-16 + Co-59, O-16,O-18 + Ni-58,Ni-60,Ni-64, and O-16,O-18 + Cu-63,Cu-65 are presented, where the nonlocal range is treated as a free parameter.
Resumo:
Nonlocal resistance is studied in a two-dimensional system with a simultaneous presence of electrons and holes in a 20 nm HgTe quantum well. A large nonlocal electric response is found near the charge neutrality point in the presence of a perpendicular magnetic field. We attribute the observed nonlocality to the edge state transport via counterpropagating chiral modes similar to the quantum spin Hall effect at a zero magnetic field and graphene near a Landau filling factor nu = 0.
Resumo:
The extension of Boltzmann-Gibbs thermostatistics, proposed by Tsallis, introduces an additional parameter q to the inverse temperature beta. Here, we show that a previously introduced generalized Metropolis dynamics to evolve spin models is not local and does not obey the detailed energy balance. In this dynamics, locality is only retrieved for q = 1, which corresponds to the standard Metropolis algorithm. Nonlocality implies very time-consuming computer calculations, since the energy of the whole system must be reevaluated when a single spin is flipped. To circumvent this costly calculation, we propose a generalized master equation, which gives rise to a local generalized Metropolis dynamics that obeys the detailed energy balance. To compare the different critical values obtained with other generalized dynamics, we perform Monte Carlo simulations in equilibrium for the Ising model. By using short-time nonequilibrium numerical simulations, we also calculate for this model the critical temperature and the static and dynamical critical exponents as functions of q. Even for q not equal 1, we show that suitable time-evolving power laws can be found for each initial condition. Our numerical experiments corroborate the literature results when we use nonlocal dynamics, showing that short-time parameter determination works also in this case. However, the dynamics governed by the new master equation leads to different results for critical temperatures and also the critical exponents affecting universality classes. We further propose a simple algorithm to optimize modeling the time evolution with a power law, considering in a log-log plot two successive refinements.
Resumo:
Dispersive wave turbulence is studied numerically for a class of one-dimensional nonlinear wave equations. Both deterministic and random (white noise in time) forcings are studied. Four distinct stable spectra are observed—the direct and inverse cascades of weak turbulence (WT) theory, thermal equilibrium, and a fourth spectrum (MMT; Majda, McLaughlin, Tabak). Each spectrum can describe long-time behavior, and each can be only metastable (with quite diverse lifetimes)—depending on details of nonlinearity, forcing, and dissipation. Cases of a long-live MMT transient state dcaying to a state with WT spectra, and vice-versa, are displayed. In the case of freely decaying turbulence, without forcing, both cascades of weak turbulence are observed. These WT states constitute the clearest and most striking numerical observations of WT spectra to date—over four decades of energy, and three decades of spatial, scales. Numerical experiments that study details of the composition, coexistence, and transition between spectra are then discussed, including: (i) for deterministic forcing, sharp distinctions between focusing and defocusing nonlinearities, including the role of long wavelength instabilities, localized coherent structures, and chaotic behavior; (ii) the role of energy growth in time to monitor the selection of MMT or WT spectra; (iii) a second manifestation of the MMT spectrum as it describes a self-similar evolution of the wave, without temporal averaging; (iv) coherent structures and the evolution of the direct and inverse cascades; and (v) nonlocality (in k-space) in the transferral process.
Resumo:
Following on from previous work [J.-A. Larsson, Phys. Rev. A 67, 022108 (2003)], Bell inequalities based on correlations between binary digits are considered for a particular entangled state involving 2N trapped ions. These inequalities involve applying displacement operations to half of the ions and then measuring correlations between pairs of corresponding bits in the binary representations of the number of center-of-mass phonons of N particular ions. It is shown that the state violates the inequalities and thus displays nonclassical correlations. It is also demonstrated that it violates a Bell inequality when the displacements are replaced by squeezing operations.
Resumo:
We experimentally demonstrate the superior discrimination of separated, unentangled two-qubit correlated states using nonlocal measurements, when compared with measurements based on local operations and classical communications. When predicted theoretically, this phenomenon was dubbed quantum nonlocality without entanglement. We characterize the performance of the nonlocal, or joint, measurement with a payoff function, for which we measure 0.72 +/- 0.02, compared with the maximum locally achievable value of 2/3 and the overall optimal value of 0.75.
Resumo:
We show that the classification of bipartite pure entangled states when local quantum operations are restricted yields a structure that is analogous in many respects to that of mixed-state entanglement. Specifically, we develop this analogy by restricting operations through local superselection rules, and show that such exotic phenomena as bound entanglement and activation arise using pure states in this setting. This analogy aids in resolving several conceptual puzzles in the study of entanglement under restricted operations. In particular, we demonstrate that several types of quantum optical states that possess confusing entanglement properties are analogous to bound entangled states. Also, the classification of pure-state entanglement under restricted operations can be much simpler than for mixed-state entanglement. For instance, in the case of local Abelian superselection rules all questions concerning distillability can be resolved.
Resumo:
We study Greenberger-Horne-Zeilinger-type (GHZ-type) and W-type three-mode entangled coherent states. Both types of entangled coherent states violate Mermin's version of the Bell inequality with threshold photon detection (i.e., without photon counting). Such an experiment can be performed using linear optics elements and threshold detectors with significant Bell violations for GHZ-type entangled coherent states. However, to demonstrate Bell-type inequality violations for W-type entangled coherent states, additional nonlinear interactions are needed. We also propose an optical scheme to generate W-type entangled coherent states in free-traveling optical fields. The required resources for the generation are a single-photon source, a coherent state source, beam splitters, phase shifters, photodetectors, and Kerr nonlinearities. Our scheme does not necessarily require strong Kerr nonlinear interactions; i.e., weak nonlinearities can be used for the generation of the W-type entangled coherent states. Furthermore, it is also robust against inefficiencies of the single-photon source and the photon detectors.