957 resultados para Nonlinear Eigenvalue Problems
Resumo:
Mathematical programming problems with equilibrium constraints (MPEC) are nonlinear programming problems where the constraints have a form that is analogous to first-order optimality conditions of constrained optimization. We prove that, under reasonable sufficient conditions, stationary points of the sum of squares of the constraints are feasible points of the MPEC. In usual formulations of MPEC all the feasible points are nonregular in the sense that they do not satisfy the Mangasarian-Fromovitz constraint qualification of nonlinear programming. Therefore, all the feasible points satisfy the classical Fritz-John necessary optimality conditions. In principle, this can cause serious difficulties for nonlinear programming algorithms applied to MPEC. However, we show that most feasible points do not satisfy a recently introduced stronger optimality condition for nonlinear programming. This is the reason why, in general, nonlinear programming algorithms are successful when applied to MPEC.
Resumo:
Esta tesis constituye un gran avance en el conocimiento del estudio y análisis de inestabilidades hidrodinámicas desde un punto de vista físico y teórico, como consecuencia de haber desarrollado innovadoras técnicas para la resolución computacional eficiente y precisa de la parte principal del espectro correspondiente a los problemas de autovalores (EVP) multidimensionales que gobiernan la inestabilidad de flujos con dos o tres direcciones espaciales inhomogéneas, denominados problemas de estabilidad global lineal. En el contexto del trabajo de desarrollo de herramientas computacionales presentado en la tesis, la discretización mediante métodos de diferencias finitas estables de alto orden de los EVP bidimensionales y tridimensionales que se derivan de las ecuaciones de Navier-Stokes linealizadas sobre flujos con dos o tres direcciones espaciales inhomogéneas, ha permitido una aceleración de cuatro órdenes de magnitud en su resolución. Esta mejora de eficiencia numérica se ha conseguido gracias al hecho de que usando estos esquemas de diferencias finitas, técnicas eficientes de resolución de problemas lineales son utilizables, explotando el alto nivel de dispersión o alto número de elementos nulos en las matrices involucradas en los problemas tratados. Como más notable consecuencia cabe destacar que la resolución de EVPs multidimensionales de inestabilidad global, que hasta la fecha necesitaban de superordenadores, se ha podido realizar en ordenadores de sobremesa. Además de la solución de problemas de estabilidad global lineal, el mencionado desarrollo numérico facilitó la extensión de las ecuaciones de estabilidad parabolizadas (PSE) lineales y no lineales para analizar la inestabilidad de flujos que dependen fuertemente en dos direcciones espaciales y suavemente en la tercera con las ecuaciones de estabilidad parabolizadas tridimensionales (PSE-3D). Precisamente la capacidad de extensión del novedoso algoritmo PSE-3D para el estudio de interacciones no lineales de los modos de estabilidad, desarrollado íntegramente en esta tesis, permite la predicción de transición en flujos complejos de gran interés industrial y por lo tanto extiende el concepto clásico de PSE, el cuál ha sido empleado exitosamente durante las pasadas tres décadas en el mismo contexto para problemas de capa límite bidimensional. Típicos ejemplos de flujos incompresibles se han analizado en este trabajo sin la necesidad de recurrir a restrictivas presuposiciones usadas en el pasado. Se han estudiado problemas vorticales como es el caso de un vórtice aislado o sistemas de vórtices simulando la estela de alas, en los que la homogeneidad axial no se impone y así se puede considerar la difusión viscosa del flujo. Además, se ha estudiado el chorro giratorio turbulento, cuya inestabilidad se utiliza para mejorar las características de funcionamiento de combustores. En la tesis se abarcan adicionalmente problemas de flujos compresibles. Se presenta el estudio de inestabilidad de flujos de borde de ataque a diferentes velocidades de vuelo. También se analiza la estela formada por un elemento rugoso aislado en capa límite supersónica e hipersónica, mostrando excelentes comparaciones con resultados obtenidos mediante simulación numérica directa. Finalmente, nuevas inestabilidades se han identificado en el flujo hipersónico a Mach 7 alrededor de un cono elíptico que modela el vehículo de pruebas en vuelo HIFiRE-5. Los resultados comparan favorablemente con experimentos en vuelo, lo que subraya aún más el potencial de las metodologías de análisis de estabilidad desarrolladas en esta tesis. ABSTRACT The present thesis constitutes a step forward in advancing the frontiers of knowledge of fluid flow instability from a physical point of view, as a consequence of having been successful in developing groundbreaking methodologies for the efficient and accurate computation of the leading part of the spectrum pertinent to multi-dimensional eigenvalue problems (EVP) governing instability of flows with two or three inhomogeneous spatial directions. In the context of the numerical work presented in this thesis, the discretization of the spatial operator resulting from linearization of the Navier-Stokes equations around flows with two or three inhomogeneous spatial directions by variable-high-order stable finite-difference methods has permitted a speedup of four orders of magnitude in the solution of the corresponding two- and three-dimensional EVPs. This improvement of numerical performance has been achieved thanks to the high-sparsity level offered by the high-order finite-difference schemes employed for the discretization of the operators. This permitted use of efficient sparse linear algebra techniques without sacrificing accuracy and, consequently, solutions being obtained on typical workstations, as opposed to the previously employed supercomputers. Besides solution of the two- and three-dimensional EVPs of global linear instability, this development paved the way for the extension of the (linear and nonlinear) Parabolized Stability Equations (PSE) to analyze instability of flows which depend in a strongly-coupled inhomogeneous manner on two spatial directions and weakly on the third. Precisely the extensibility of the novel PSE-3D algorithm developed in the framework of the present thesis to study nonlinear flow instability permits transition prediction in flows of industrial interest, thus extending the classic PSE concept which has been successfully employed in the same context to boundary-layer type of flows over the last three decades. Typical examples of incompressible flows, the instability of which was analyzed in the present thesis without the need to resort to the restrictive assumptions used in the past, range from isolated vortices, and systems thereof, in which axial homogeneity is relaxed to consider viscous diffusion, as well as turbulent swirling jets, the instability of which is exploited in order to improve flame-holding properties of combustors. The instability of compressible subsonic and supersonic leading edge flows has been solved, and the wake of an isolated roughness element in a supersonic and hypersonic boundary-layer has also been analyzed with respect to its instability: excellent agreement with direct numerical simulation results has been obtained in all cases. Finally, instability analysis of Mach number 7 ow around an elliptic cone modeling the HIFiRE-5 flight test vehicle has unraveled flow instabilities near the minor-axis centerline, results comparing favorably with flight test predictions.
Resumo:
We analyze the stochastic creation of a single bound state (BS) in a random potential with a compact support. We study both the Hermitian Schrödinger equation and non-Hermitian Zakharov-Shabat systems. These problems are of special interest in the inverse scattering method for Korteveg–de-Vries and the nonlinear Schrödinger equations since soliton solutions of these two equations correspond to the BSs of the two aforementioned linear eigenvalue problems. Analytical expressions for the average width of the potential required for the creation of the first BS are given in the approximation of delta-correlated Gaussian potential and additionally different scenarios of eigenvalue creation are discussed for the non-Hermitian case.
Resumo:
We consider a model eigenvalue problem (EVP) in 1D, with periodic or semi–periodic boundary conditions (BCs). The discretization of this type of EVP by consistent mass finite element methods (FEMs) leads to the generalized matrix EVP Kc = λ M c, where K and M are real, symmetric matrices, with a certain (skew–)circulant structure. In this paper we fix our attention to the use of a quadratic FE–mesh. Explicit expressions for the eigenvalues of the resulting algebraic EVP are established. This leads to an explicit form for the approximation error in terms of the mesh parameter, which confirms the theoretical error estimates, obtained in [2].
Resumo:
Dans cette thèse, nous sommes intéressés par des problèmes de préservation des applications non-linéaires entre deux algèbres de Banach complexes unitaires A et B. En général, ces problèmes demandent la caractérisation des applications φ : A → B non nécessairement linéaires, qui laissent invariant une propriété, une relation ou un sous-ensemble. Dans le Chapitre 3, la description des applications surjectives φ de B(X) sur B(Y), qui satisfont c(φ(S)±φ(T)) = c(S ± T), (S,T ∈ B(X)), est donnée, où c(·) représente soit le module minimal, ou le module de surjectivité ou le module maximal et B(X) (resp. B(Y)) dénote l’algèbre de tous les opérateurs linéaires et bornés sur X (resp. sur Y). Dans le Chapitre 4, une question similaire pour la conorme des opérateurs, est considérée. La caractérisation des applications bicontinues et bijectives φ deB(X) surB(Y), qui satisfont γ(φ(S ± φ(T)) = γ(S ± T), (S,T ∈ B(X)), est obtenue. Le Chapitre 5 est consacré à la description des applications surjectives φ1,φ2 d’une algèbre de Banach semisimple A sur une algèbre de Banach B avec un socle essentiel, qui satisfont σ(φ1(a)φ2(b)) = σ(ab), (a,b ∈ A). Aussi, la caractérisation des applications φ de A sur B, sous les mêmes hypothèses sur A et B, qui satisfont σ(φ(a)φ(b)φ(a)) = σ(aba), (a,b ∈ A), est donnée. Comme conséquences, nous incluons les résultats obtenus au cas des algèbres B(X) et B(Y).
Resumo:
The BBMCSFilter method was developed to solve mixed integer nonlinear programming problems. This kind of problems have integer and continuous variables and they appear very frequently in process engineering problems. The objective of this work is to analyze the performance of the method when the coordinate searches are interrupted in the context of the multistart strategy. From the numerical experiments, we observed a reduction on the number of function evaluations and on the CPU time.
Resumo:
This article elucidates and analyzes the fundamental underlying structure of the renormalization group (RG) approach as it applies to the solution of any differential equation involving multiple scales. The amplitude equation derived through the elimination of secular terms arising from a naive perturbation expansion of the solution to these equations by the RG approach is reduced to an algebraic equation which is expressed in terms of the Thiele semi-invariants or cumulants of the eliminant sequence { Zi } i=1 . Its use is illustrated through the solution of both linear and nonlinear perturbation problems and certain results from the literature are recovered as special cases. The fundamental structure that emerges from the application of the RG approach is not the amplitude equation but the aforementioned algebraic equation. © 2008 The American Physical Society.
Resumo:
Following the method due to Bhatnagar (P. L.) [Jour. Ind. Inst. Sic., 1968, 1, 50, 1], we have discussed in this paper the problem of suction and injection and that of heat transfer for a viscous, incompressible fluid through a porous pipe of uniform circular cross-section, the wall of the pipe being maintained at constant temperature. The method utilises some important properties of differential equations and some transformations that enable the solution of the two-point boundary value and eigenvalue problems without using trial and error method. In fact, each integration provides us with a solution for a suction parameter and a Reynolds number without imposing the conditions of smallness on them. Investigations on non-Newtonian fluids and on other bounding geometries will be published elsewhere.
Resumo:
This paper deals with the investigation of the vibration characteristics of simply-supported unsymmetric trapezoidal plates. For numerical calculations, the relationship between the eigenvalue problems of a polygonal simply-supported plate and polygonal membrane is again effectively utilized. The Galerkin method is applied, with the deflection surface expressed in terms of a Fourier sine series in transformed coordinates. Numerical values for the first seven to eight frequencies for different geometries of the unsymmetric trapezoid are presented in the form of tables. Also the nodal patterns for a few representative configurations are presented.
Resumo:
The problem of cooperative beamforming for maximizing the achievable data rate of an energy constrained two-hop amplify-and-forward (AF) network is considered. Assuming perfect channel state information (CSI) of all the nodes, we evaluate the optimal scaling factor for the relay nodes. Along with individual power constraint on each of the relay nodes, we consider a weighted sum power constraint. The proposed iterative algorithm initially solves a set of relaxed problems with weighted sum power constraint and then updates the solution to accommodate individual constraints. These relaxed problems in turn are solved using a sequence of Quadratic Eigenvalue Problems (QEP). The key contribution of this letter is the generalization of cooperative beamforming to incorporate both the individual and weighted sum constraint. Furthermore, we have proposed a novel algorithm based on Quadratic Eigenvalue Problem (QEP) and discussed its convergence.
Resumo:
In this paper, we examine a new basic state of long axisymmetric liquid zone, subjected to axial temperature gradients which induce steady viscous flow driven by thermocapillarity. Axial velocity 1/4S-1/2R(B) of liquid zone connects pulling velocity of single crystal. The stability of liquid zone with pulling velocity 1/4S-1/2R(B) to small axisymmetric disturbance is examined The eigenvalue problems on the stability are derived. A special case (eta = 0) is discussed.
Resumo:
基于同伦映射的思想,改进了求解非线性反问题的梯度正则化算法.通过路径跟踪有效地拓宽了梯度正则化算法求解的收敛范围.对于正则化参数的修正,通过引入拟Sigmoid函数,提出了一种下降速率可调的连续化参数修正方法,在保证迭代稳定的条件下,得到较好的计算效率,同时保证该算法具有很好的抵抗观测噪声能力.实际算例表明,该方法收敛范围宽,计算效率高,在存在较强观测噪声的条件下也能得到很好的反演结果.
Resumo:
Como eventos de fissão induzida por nêutrons não ocorrem nas regiões nãomultiplicativas de reatores nucleares, e.g., moderador, refletor, e meios estruturais, essas regiões não geram potência e a eficiência computacional dos cálculos globais de reatores nucleares pode portanto ser aumentada eliminando os cálculos numéricos explícitos no interior das regiões não-multiplicativas em torno do núcleo ativo. É discutida nesta dissertação a eficiência computacional de condições de contorno aproximadas tipo albedo na formulação de ordenadas discretas (SN) para problemas de autovalor a dois grupos de energia em geometria bidimensional cartesiana. Albedo, palavra de origem latina para alvura, foi originalmente definido como a fração da luz incidente que é refletida difusamente por uma superfície. Esta palavra latina permaneceu como o termo científico usual em astronomia e nesta dissertação este conceito é estendido para reflexão de nêutrons. Este albedo SN nãoconvencional substitui aproximadamente a região refletora em torno do núcleo ativo do reator, pois os termos de fuga transversal são desprezados no interior do refletor. Se o problema, em particular, não possui termos de fuga transversal, i.e., trata-se de um problema unidimensional, então as condições de contorno albedo, como propostas nesta dissertação, são exatas. Por eficiência computacional entende-se analisar a precisão dos resultados numéricos em comparação com o tempo de execução computacional de cada simulação de um dado problema-modelo. Resultados numéricos para dois problemas-modelo com de simetria são considerados para ilustrar esta análise de eficiência.
Resumo:
Extensos estudos realizados nas últimas décadas sobre a propagação de ondas ultrassônicas em sólidos levaram ao desenvolvimento de técnicas não destrutivas para a avaliação da segurança e integridade de estruturas e componentes industriais. O interesse na aplicação de técnicas ultrassônicas para medição de tensões aplicadas e residuais decorre da mudança mensurável da velocidade das ondas ultrassônicas na presença de um campo de tensões, fenômeno conhecido como efeito acustoelástico. Uma teoria de acustoelasticidade fornece um meio atrativo e não destrutivo de medir a tensão média ao longo do caminho percorrido pela onda. O estudo da propagação das ondas ultrassônicas em meios homogêneos anisotrópicos sob tensão conduz a um problema não linear de autovalores dado pela equação de Christoffel generalizada. A característica não linear deste problema decorre da interdependência entre as constantes elásticas efetivas do material e as tensões atuantes. A medição experimental de tensões por técnicas ultrassônicas é um problema inverso da acustoelasticidade. Esta dissertação apresenta a implementação de um algoritmo numérico, baseado no método proposto por Degtyar e Rokhlin, para solução do problema inverso da acustoelasticidade em sólidos ortotrópicos sujeitos a um estado plano de tensões. A solução da equação de Christoffel generalizada apresenta dificuldades de natureza numérica e prática. A estabilidade e a precisão do algoritmo desenvolvido, bem como a influência das incertezas na medição experimental das velocidades das ondas ultrassônicas, foram então investigadas. Dados sintéticos para as velocidades das ondas ultrassônicas de incidência oblíqua em uma placa sujeita a um estado plano de tensões foram gerados pela solução direta da equação de Christoffel generalizada para ilustrar a aplicação do algoritmo desenvolvido. O objetivo maior desta dissertação é a disponibilização de uma nova ferramenta de cálculo para suporte às atividades experimentais de medição de tensões por ultrassom no país.
Resumo:
É presentada nesta dissertação uma análise espectral das equações de transporte de nêutrons, independente do tempo, em geometria unidimensional e bidimensional, na formulação de ordenadas discretas (SN), utilizando o modelo de uma velocidade e multigrupo, considerando meios onde ocorrem o fenômeno da fissão nuclear. Esta análise espectral constitui-se na resolução de problemas de autovalores e respectivos autovetores, e reproduz a expressão para a solução geral analítica local das equações SN (para geometria unidimensional) ou das equações nodais integradas transversalmente (geometria retangular bidimensional) dentro de cada região homogeneizada do domínio espacial. Com a solução geral local determinada, métodos numéricos, tais como os métodos de matriz de resposta SN, podem ser derivados. Os resultados numéricos são gerados por programas de computadores implementados em MatLab, versão 2012, a fim de verificar a natureza dos autovalores e autovetores correspondentes no espaço real ou complexo.