941 resultados para Non-autonomous dynamical systems
Resumo:
We report experimental and numerical results showing how certain N-dimensional dynamical systems are able to exhibit complex time evolutions based on the nonlinear combination of N-1 oscillation modes. The experiments have been done with a family of thermo-optical systems of effective dynamical dimension varying from 1 to 6. The corresponding mathematical model is an N-dimensional vector field based on a scalar-valued nonlinear function of a single variable that is a linear combination of all the dynamic variables. We show how the complex evolutions appear associated with the occurrence of successive Hopf bifurcations in a saddle-node pair of fixed points up to exhaust their instability capabilities in N dimensions. For this reason the observed phenomenon is denoted as the full instability behavior of the dynamical system. The process through which the attractor responsible for the observed time evolution is formed may be rather complex and difficult to characterize. Nevertheless, the well-organized structure of the time signals suggests some generic mechanism of nonlinear mode mixing that we associate with the cluster of invariant sets emerging from the pair of fixed points and with the influence of the neighboring saddle sets on the flow nearby the attractor. The generation of invariant tori is likely during the full instability development and the global process may be considered as a generalized Landau scenario for the emergence of irregular and complex behavior through the nonlinear superposition of oscillatory motions
Resumo:
A dynamical systems approach to competition of Saffman-Taylor fingers in a Hele-Shaw channel is developed. This is based on global analysis of the phase space flow of the low-dimensional ordinary-differential-equation sets associated with the classes of exact solutions of the problem without surface tension. Some simple examples are studied in detail. A general proof of the existence of finite-time singularities for broad classes of solutions is given. Solutions leading to finite-time interface pinchoff are also identified. The existence of a continuum of multifinger fixed points and its dynamical implications are discussed. We conclude that exact zero-surface tension solutions taken in a global sense as families of trajectories in phase space are unphysical because the multifinger fixed points are nonhyperbolic, and an unfolding does not exist within the same class of solutions. Hyperbolicity (saddle-point structure) of the multifinger fixed points is argued to be essential to the physically correct qualitative description of finger competition. The restoring of hyperbolicity by surface tension is proposed as the key point to formulate a generic dynamical solvability scenario for interfacial pattern selection.
Resumo:
We show how certain N-dimensional dynamical systems are able to exploit the full instability capabilities of their fixed points to do Hopf bifurcations and how such a behavior produces complex time evolutions based on the nonlinear combination of the oscillation modes that emerged from these bifurcations. For really different oscillation frequencies, the evolutions describe robust wave form structures, usually periodic, in which selfsimilarity with respect to both the time scale and system dimension is clearly appreciated. For closer frequencies, the evolution signals usually appear irregular but are still based on the repetition of complex wave form structures. The study is developed by considering vector fields with a scalar-valued nonlinear function of a single variable that is a linear combination of the N dynamical variables. In this case, the linear stability analysis can be used to design N-dimensional systems in which the fixed points of a saddle-node pair experience up to N21 Hopf bifurcations with preselected oscillation frequencies. The secondary processes occurring in the phase region where the variety of limit cycles appear may be rather complex and difficult to characterize, but they produce the nonlinear mixing of oscillation modes with relatively generic features
Resumo:
In this paper is Analyzed the local dynamical behavior of a slewing flexible structure considering nonlinear curvature. The dynamics of the original (nonlinear) governing equations of motion are reduced to the center manifold in the neighborhood of an equilibrium solution with the purpose of locally study the stability of the system. In this critical point, a Hopf bifurcation occurs. In this region, one can find values for the control parameter (structural damping coefficient) where the system is unstable and values where the system stability is assured (periodic motion). This local analysis of the system reduced to the center manifold assures the stable / unstable behavior of the original system around a known solution.
Resumo:
Identification and Control of Non‐linear dynamical systems are challenging problems to the control engineers.The topic is equally relevant in communication,weather prediction ,bio medical systems and even in social systems,where nonlinearity is an integral part of the system behavior.Most of the real world systems are nonlinear in nature and wide applications are there for nonlinear system identification/modeling.The basic approach in analyzing the nonlinear systems is to build a model from known behavior manifest in the form of system output.The problem of modeling boils down to computing a suitably parameterized model,representing the process.The parameters of the model are adjusted to optimize a performanace function,based on error between the given process output and identified process/model output.While the linear system identification is well established with many classical approaches,most of those methods cannot be directly applied for nonlinear system identification.The problem becomes more complex if the system is completely unknown but only the output time series is available.Blind recognition problem is the direct consequence of such a situation.The thesis concentrates on such problems.Capability of Artificial Neural Networks to approximate many nonlinear input-output maps makes it predominantly suitable for building a function for the identification of nonlinear systems,where only the time series is available.The literature is rich with a variety of algorithms to train the Neural Network model.A comprehensive study of the computation of the model parameters,using the different algorithms and the comparison among them to choose the best technique is still a demanding requirement from practical system designers,which is not available in a concise form in the literature.The thesis is thus an attempt to develop and evaluate some of the well known algorithms and propose some new techniques,in the context of Blind recognition of nonlinear systems.It also attempts to establish the relative merits and demerits of the different approaches.comprehensiveness is achieved in utilizing the benefits of well known evaluation techniques from statistics. The study concludes by providing the results of implementation of the currently available and modified versions and newly introduced techniques for nonlinear blind system modeling followed by a comparison of their performance.It is expected that,such comprehensive study and the comparison process can be of great relevance in many fields including chemical,electrical,biological,financial and weather data analysis.Further the results reported would be of immense help for practical system designers and analysts in selecting the most appropriate method based on the goodness of the model for the particular context.
Resumo:
A Pseudomonas sp PS-102 recovered from Muttukkadu brackish water lagoon, situated south of Chennai, showed significant activity against a number of shrimp pathogenic vibrios. Out of the 112 isolates of bacterial pathogens comprising Vibrio harveyi, V. vulnificus, V. parahaemolyticus, V. alginolyticus, V. fluvialis, and Aeromonas spp, 73% were inhibited in vitro by the cell-free culture supernatant of Pseudomonas sp PS-102 isolate. The organism produced yellowish fluorescent pigment on King's B medium, hydrolysed starch and protein, and produced 36.4% siderophore units by CAS assay and 32 μM of catechol siderophores as estimated by Arnow's assay. The PS-102 isolate showed wide ranging environmental tolerance with, temperatures from 25 to 40 °C, pH from 6 to 8, salinity from 0 to 36 ppt, while the antagonistic activity peaked in cultures grown at 30 °C, pH 8.0 and at 5 ppt saline conditions. The antagonistic activity of the culture supernatant was evident even at 30% v / v dilution against V. harveyi. The preliminary studies on the nature of the antibacterial action indicated that the antagonistic principle as heat stable and resistant to proteolytic, lipolytic and amylolytic enzymes. Pseudomonas sp PS 102 was found to be safe to shrimp when PL-9 stage were challenged at 107 CFU ml−1 and by intramuscular injection into of ∼5 g sub-adults shrimp at 105 to 108 CFU. Further, its safety in a mammalian system, tested by its pathogenicity to mice, was also determined and its LD50 to BALB/c mice was found to be 109 CFU. The results of this study indicated that the organism Pseudomonas sp PS 102 could be employed as a potential probiont in shrimp and prawn aquaculture systems for management and control of bacterial infections
Resumo:
For establishing nitrification in prawn (non-penaeid, salinity 10–15 ppt) and shrimp (penaeid, salinity 30–35 ppt) larval production systems, a stringed bed suspended bioreactor (SBSBR) was designed, fabricated, and validated. It was fabricated with 5 mm polystyrene and low density polyethylene beads as the substrata for ammonia and nitrite oxidizing bacterial consortia, respectively, with an overall surface area of 684 cm2. The reactors were activated in a prototype activator and were transported in polythene bags to the site of testing. Performance of the reactors activated with the nitrifying bacterial consortia AMONPCU-1 (ammonia oxidizers for non-penaeid culture) and NIONPCU-1 (nitrite oxidizers for non-penaeid culture) was evaluated in a Macrobrachium rosenbergii larval rearing system and those activated with AMOPCU-1 (ammonia oxidizers for penaeid culture) and NIOPCU-1 (nitrite oxidizers for penaeid culture) in a Penaeus monodon seed production system. Rapid setting up of nitrification could be observed in both the static systems which resulted in a higher relative per cent survival of larvae
Resumo:
I present a novel design methodology for the synthesis of automatic controllers, together with a computational environment---the Control Engineer's Workbench---integrating a suite of programs that automatically analyze and design controllers for high-performance, global control of nonlinear systems. This work demonstrates that difficult control synthesis tasks can be automated, using programs that actively exploit and efficiently represent knowledge of nonlinear dynamics and phase space and effectively use the representation to guide and perform the control design. The Control Engineer's Workbench combines powerful numerical and symbolic computations with artificial intelligence reasoning techniques. As a demonstration, the Workbench automatically designed a high-quality maglev controller that outperforms a previous linear design by a factor of 20.
Resumo:
Formalizing linguists' intuitions of language change as a dynamical system, we quantify the time course of language change including sudden vs. gradual changes in languages. We apply the computer model to the historical loss of Verb Second from Old French to modern French, showing that otherwise adequate grammatical theories can fail our new evolutionary criterion.
Resumo:
Exercises and solutions for a third or fourth year maths course. Diagrams for the questions are all together in the support.zip file, as .eps files
Resumo:
In this study a minimum variance neuro self-tuning proportional-integral-derivative (PID) controller is designed for complex multiple input-multiple output (MIMO) dynamic systems. An approximation model is constructed, which consists of two functional blocks. The first block uses a linear submodel to approximate dominant system dynamics around a selected number of operating points. The second block is used as an error agent, implemented by a neural network, to accommodate the inaccuracy possibly introduced by the linear submodel approximation, various complexities/uncertainties, and complicated coupling effects frequently exhibited in non-linear MIMO dynamic systems. With the proposed model structure, controller design of an MIMO plant with n inputs and n outputs could be, for example, decomposed into n independent single input-single output (SISO) subsystem designs. The effectiveness of the controller design procedure is initially verified through simulations of industrial examples.
Resumo:
Abu-Saris and DeVault proposed two open problems about the difference equation x(n+1) = a(n)x(n)/x(n-1), n = 0, 1, 2,..., where a(n) not equal 0 for n = 0, 1, 2..., x(-1) not equal 0, x(0) not equal 0. In this paper we provide solutions to the two open problems. (c) 2004 Elsevier Inc. All rights reserved.
Resumo:
In this paper the use of neural networks for the control of dynamical systems is considered. Both identification and feedback control aspects are discussed as well as the types of system for which neural networks can provide a useful technique. Multi-layer Perceptron and Radial Basis function neural network types are looked at, with an emphasis on the latter. It is shown how basis function centre selection is a critical part of the implementation process and that multivariate clustering algorithms can be an extremely useful tool for finding centres.
Resumo:
Using the formalism of the Ruelle response theory, we study how the invariant measure of an Axiom A dynamical system changes as a result of adding noise, and describe how the stochastic perturbation can be used to explore the properties of the underlying deterministic dynamics. We first find the expression for the change in the expectation value of a general observable when a white noise forcing is introduced in the system, both in the additive and in the multiplicative case. We also show that the difference between the expectation value of the power spectrum of an observable in the stochastically perturbed case and of the same observable in the unperturbed case is equal to the variance of the noise times the square of the modulus of the linear susceptibility describing the frequency-dependent response of the system to perturbations with the same spatial patterns as the considered stochastic forcing. This provides a conceptual bridge between the change in the fluctuation properties of the system due to the presence of noise and the response of the unperturbed system to deterministic forcings. Using Kramers-Kronig theory, it is then possible to derive the real and imaginary part of the susceptibility and thus deduce the Green function of the system for any desired observable. We then extend our results to rather general patterns of random forcing, from the case of several white noise forcings, to noise terms with memory, up to the case of a space-time random field. Explicit formulas are provided for each relevant case analysed. As a general result, we find, using an argument of positive-definiteness, that the power spectrum of the stochastically perturbed system is larger at all frequencies than the power spectrum of the unperturbed system. We provide an example of application of our results by considering the spatially extended chaotic Lorenz 96 model. These results clarify the property of stochastic stability of SRB measures in Axiom A flows, provide tools for analysing stochastic parameterisations and related closure ansatz to be implemented in modelling studies, and introduce new ways to study the response of a system to external perturbations. Taking into account the chaotic hypothesis, we expect that our results have practical relevance for a more general class of system than those belonging to Axiom A.