794 resultados para Non Parametric Methodology
Resumo:
This paper examines the mean-reverting property of real exchange rates. Earlier studies have generally not been able to reject the null hypothesis of a unit-root in real exchange rates, especially for the post-Bretton Woods floating period. The results imply that long-run purchasing power parity does not hold. More recent studies, especially those using panel unit-root tests, have found more favorable results, however. But, Karlsson and Löthgren (2000) and others have recently pointed out several potential pitfalls of panel unit-root tests. Thus, the panel unit-root test results are suggestive, but they are far from conclusive. Moreover, consistent individual country time series evidence that supports long-run purchasing power parity continues to be scarce. In this paper, we test for long memory using Lo's (1991) modified rescaled range test, and the rescaled variance test of Giraitis, Kokoszka, Leipus, and Teyssière (2003). Our testing procedure provides a non-parametric alternative to the parametric tests commonly used in this literature. Our data set consists of monthly observations from April 1973 to April 2001 of the G-7 countries in the OECD. Our two tests find conflicting results when we use U.S. dollar real exchange rates. However, when non-U.S. dollar real exchange rates are used, we find only two cases out of fifteen where the null hypothesis of an unit-root with short-term dependence can be rejected in favor of the alternative hypothesis of long-term dependence using the modified rescaled range test, and only one case when using the rescaled variance test. Our results therefore provide a contrast to the recent favorable panel unit-root test results.
Resumo:
Here, a novel and efficient moving object detection strategy by non-parametric modeling is presented. Whereas the foreground is modeled by combining color and spatial information, the background model is constructed exclusively with color information, thus resulting in a great reduction of the computational and memory requirements. The estimation of the background and foreground covariance matrices, allows us to obtain compact moving regions while the number of false detections is reduced. Additionally, the application of a tracking strategy provides a priori knowledge about the spatial position of the moving objects, which improves the performance of the Bayesian classifier
Resumo:
Along the recent years, several moving object detection strategies by non-parametric background-foreground modeling have been proposed. To combine both models and to obtain the probability of a pixel to belong to the foreground, these strategies make use of Bayesian classifiers. However, these classifiers do not allow to take advantage of additional prior information at different pixels. So, we propose a novel and efficient alternative Bayesian classifier that is suitable for this kind of strategies and that allows the use of whatever prior information. Additionally, we present an effective method to dynamically estimate prior probability from the result of a particle filter-based tracking strategy.
Resumo:
The paper proposes a new application of non-parametric statistical processing of signals recorded from vibration tests for damage detection and evaluation on I-section steel segments. The steel segments investigated constitute the energy dissipating part of a new type of hysteretic damper that is used for passive control of buildings and civil engineering structures subjected to earthquake-type dynamic loadings. Two I-section steel segments with different levels of damage were instrumented with piezoceramic sensors and subjected to controlled white noise random vibrations. The signals recorded during the tests were processed using two non-parametric methods (the power spectral density method and the frequency response function method) that had never previously been applied to hysteretic dampers. The appropriateness of these methods for quantifying the level of damage on the I-shape steel segments is validated experimentally. Based on the results of the random vibrations, the paper proposes a new index that predicts the level of damage and the proximity of failure of the hysteretic damper
Resumo:
Are the learning procedures of genetic algorithms (GAs) able to generate optimal architectures for artificial neural networks (ANNs) in high frequency data? In this experimental study,GAs are used to identify the best architecture for ANNs. Additional learning is undertaken by the ANNs to forecast daily excess stock returns. No ANN architectures were able to outperform a random walk,despite the finding of non-linearity in the excess returns. This failure is attributed to the absence of suitable ANN structures and further implies that researchers need to be cautious when making inferences from ANN results that use high frequency data.
Resumo:
This paper discusses the use of the non-parametric free disposal hull (FDH) and the parametric multi-level model (MLM) as alternative methods for measuring pupil and school attainment where hierarchical structured data are available. Using robust FDH estimates, we show how to decompose the overall inefficiency of a unit (a pupil) into a unit specific and a higher level (a school) component. By a sample of entry and exit attainments of 3017 girls in British ordinary single sex schools, we test the robustness of the non-parametric and parametric estimates. Finally, the paper uses the traditional MLM model in a best practice framework so that pupil and school efficiencies can be computed.
Resumo:
To carry out an analysis of variance, several assumptions are made about the nature of the experimental data which have to be at least approximately true for the tests to be valid. One of the most important of these assumptions is that a measured quantity must be a parametric variable, i.e., a member of a normally distributed population. If the data are not normally distributed, then one method of approach is to transform the data to a different scale so that the new variable is more likely to be normally distributed. An alternative method, however, is to use a non-parametric analysis of variance. There are a limited number of such tests available but two useful tests are described in this Statnote, viz., the Kruskal-Wallis test and Friedmann’s analysis of variance.
Resumo:
Different types of numerical data can be collected in a scientific investigation and the choice of statistical analysis will often depend on the distribution of the data. A basic distinction between variables is whether they are ‘parametric’ or ‘non-parametric’. When a variable is parametric, the data come from a symmetrically shaped distribution known as the ‘Gaussian’ or ‘normal distribution’ whereas non-parametric variables may have a distribution which deviates markedly in shape from normal. This article describes several aspects of the problem of non-normality including: (1) how to test for two common types of deviation from a normal distribution, viz., ‘skew’ and ‘kurtosis’, (2) how to fit the normal distribution to a sample of data, (3) the transformation of non-normally distributed data and scores, and (4) commonly used ‘non-parametric’ statistics which can be used in a variety of circumstances.
Resumo:
The use of Diagnosis Related Groups (DRG) as a mechanism for hospital financing is a currently debated topic in Portugal. The DRG system was scheduled to be initiated by the Health Ministry of Portugal on January 1, 1990 as an instrument for the allocation of public hospital budgets funded by the National Health Service (NHS), and as a method of payment for other third party payers (e.g., Public Employees (ADSE), private insurers, etc.). Based on experience from other countries such as the United States, it was expected that implementation of this system would result in more efficient hospital resource utilisation and a more equitable distribution of hospital budgets. However, in order to minimise the potentially adverse financial impact on hospitals, the Portuguese Health Ministry decided to gradually phase in the use of the DRG system for budget allocation by using blended hospitalspecific and national DRG casemix rates. Since implementation in 1990, the percentage of each hospitals budget based on hospital specific costs was to decrease, while the percentage based on DRG casemix was to increase. This was scheduled to continue until 1995 when the plan called for allocating yearly budgets on a 50% national and 50% hospitalspecific cost basis. While all other nonNHS third party payers are currently paying based on DRGs, the adoption of DRG casemix as a National Health Service budget setting tool has been slower than anticipated. There is now some argument in both the political and academic communities as to the appropriateness of DRGs as a budget setting criterion as well as to their impact on hospital efficiency in Portugal. This paper uses a twostage procedure to assess the impact of actual DRG payment on the productivity (through its components, i.e., technological change and technical efficiency change) of diagnostic technology in Portuguese hospitals during the years 1992–1994, using both parametric and nonparametric frontier models. We find evidence that the DRG payment system does appear to have had a positive impact on productivity and technical efficiency of some commonly employed diagnostic technologies in Portugal during this time span.
Resumo:
Often observations are nested within other units. This is particularly the case in the educational sector where school performance in terms of value added is the result of school contribution as well as pupil academic ability and other features relating to the pupil. Traditionally, the literature uses parametric (i.e. it assumes a priori a particular function on the production process) Multi-Level Models to estimate the performance of nested entities. This paper discusses the use of the non-parametric (i.e. without a priori assumptions on the production process) Free Disposal Hull model as an alternative approach. While taking into account contextual characteristics as well as atypical observations, we show how to decompose non-parametrically the overall inefficiency of a pupil into a unit specific and a higher level (i.e. a school) component. By a sample of entry and exit attainments of 3017 girls in British ordinary single sex schools, we test the robustness of the non-parametric and parametric estimates. We find that the two methods agree in the relative measures of the scope for potential attainment improvement. Further, the two methods agree on the variation in pupil attainment and the proportion attributable to pupil and school level.
Resumo:
If in a correlation test, one or both variables are small whole numbers, scores based on a limited scale, or percentages, a non-parametric correlation coefficient should be considered as an alternative to Pearson’s ‘r’. Kendall’s t and Spearman’s rs are similar tests but the former should be considered if the analysis is to be extended to include partial correlations. If the data contain many tied values, then gamma should be considered as a suitable test.
Resumo:
This paper analyses the effect of corruption on Multinational Enterprises' (MNEs) incentives to undertake FDI in a particular country. We contribute to the existing literature by modelling the relationship between corruption and FDI using both parametric and non-parametric methods. We report that the impact of corruption on FDI stock is different for the different quantiles of the FDI stock distribution. This is a characteristic that could not be captured in previous studies which used only parametric methods. After controlling for the location selection process of MNEs and other host country characteristics, the result from both parametric and non-parametric analyses offer some support for the ‘helping-hand’ role of corruption.
Resumo:
Practitioners assess performance of entities in increasingly large and complicated datasets. If non-parametric models, such as Data Envelopment Analysis, were ever considered as simple push-button technologies, this is impossible when many variables are available or when data have to be compiled from several sources. This paper introduces by the 'COOPER-framework' a comprehensive model for carrying out non-parametric projects. The framework consists of six interrelated phases: Concepts and objectives, On structuring data, Operational models, Performance comparison model, Evaluation, and Result and deployment. Each of the phases describes some necessary steps a researcher should examine for a well defined and repeatable analysis. The COOPER-framework provides for the novice analyst guidance, structure and advice for a sound non-parametric analysis. The more experienced analyst benefits from a check list such that important issues are not forgotten. In addition, by the use of a standardized framework non-parametric assessments will be more reliable, more repeatable, more manageable, faster and less costly. © 2010 Elsevier B.V. All rights reserved.