972 resultados para Nombres geográficos


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traité de science occulte, en deux parties, la première (page 8), en 19 chapitres, appelée « Science de la terre », la seconde (page 234), en 20 chapitres, « Science du nom » ou traité de « Néomance » ou « Néomancie ». Figures dans la 2e partie. — Table des chapitres à la fin du volume. En tête du volume (page I), grand dessin lavé, représentant Jacques de Souvré, en buste, avec ses armoiries. A la page III, on lit : « Ex dono d[omini] Vallant. »

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UANL

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UANL

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UANL

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UANL

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Notre recherche s’intéresse à la transformation des rapports aux nombres rationnels d’élèves de 1re secondaire présentant des difficultés d’apprentissage. Comme le montrent plusieurs recherches, le défi majeur auquel sont confrontés les enseignants, ainsi que les chercheurs, est de ne pas s’enliser dans le cercle vicieux d’une réduction des enjeux de l’apprentissage des nombres rationnels et des possibilités d’apprentissage de l’élève en difficultés d’apprentissage, cet élève n’ayant pas ainsi la chance de mettre à l’épreuve ses connaissances, d’oser s’engager dans une démarche de construction de connaissances et d’apprécier les effets de son engagement cognitif. Afin de relever ce défi, nous avons misé sur l’intégration harmonieuse de situations problèmes. Il nous a semblé que, dans une démarche d’acculturation, l’approche écologique soit tout indiquée pour penser une «dé-transposition/re-transposition didactique» (Antibi et Brousseau, 2000) et reconstruire une mémoire porteuse d’espoirs (Brousseau et Centeno, 1998). Notre recherche vise à: 1) caractériser la progression des démarches d’acculturation institutionnelle de l’enseignant, du chercheur et des élèves et leurs effets sur les processus d’élaboration et de gestion des situations d’enseignement; 2) préciser l’évolution des connaissances, des habitus et des rapports des élèves aux nombres rationnels. Notre intégration en classe, d’une durée de 6 mois, nous a permis d’apprécier les effets du processus d’acculturation. Nous avons noté des changements importants dans la topogénèse et la chronogénèse des savoirs (Mercier, 1995); alors qu’à notre entrée, l’enseignante adoptait la démarche suivante, soit effectuer un exposé des savoirs et des démarches que les élèves devaient consigner dans leurs notes de cours, afin de pouvoir par la suite s’y référer pour effectuer des exercices et résoudre des problèmes, elle modifiait progressivement cette démarche en proposant des problèmes qui pouvaient permettre aux élèves de coordonner diverses connaissances et de construire ainsi des savoirs auxquels ils pouvaient faire référence dans la construction de leurs notes de cours qu’ils pouvaient par la suite consulter pour effectuer divers exercices. Nous avons également pu apprécier les effets de l’intégration de diverses représentations des nombres rationnels sur l’avancée du temps didactique (Mercier, 1995) et la transformation des rapports et habitus des élèves aux nombres rationnels (Bourdieu, 1980). Ces changements se sont manifestés, entre autres, par : a) un investissement important lors de situations complexes; b) l’adoption de pratiques mathématiques plus attentives aux données numériques et aux relations entre ces données; c) l’apparition de conduites « inusitées » [ex. coordination de divers registres sémiotiques,exploitation de compositions additives/multiplicatives et d’écritures non conventionnelles]. De telles conduites sont similaires à celles observées dans plusieurs recherches effectuées auprès d’une population d’élèves qui ne présentent pas de difficultés d’apprentissage (Moss et Case, 1999). Les résultats de notre recherche soutiennent donc l’importance indéniable de considérer les élèves en difficultés comme étant mathématiquement compétents, comme le soulignent Empson (2003) et Houssart (2002). Il nous semble enfin important de souligner que le travail sur la représentation des nombres rationnels a constitué une niche particulièrement fertile, pour un travail fondamental sur les nombres rationnels, travail qui puisse permettre aux élèves de poursuivre plus harmonieusement leurs apprentissages, les nombres rationnels étant des objets de savoir incontournables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le sujet principal de cette thèse est la distribution des nombres premiers dans les progressions arithmétiques, c'est-à-dire des nombres premiers de la forme $qn+a$, avec $a$ et $q$ des entiers fixés et $n=1,2,3,\dots$ La thèse porte aussi sur la comparaison de différentes suites arithmétiques par rapport à leur comportement dans les progressions arithmétiques. Elle est divisée en quatre chapitres et contient trois articles. Le premier chapitre est une invitation à la théorie analytique des nombres, suivie d'une revue des outils qui seront utilisés plus tard. Cette introduction comporte aussi certains résultats de recherche, que nous avons cru bon d'inclure au fil du texte. Le deuxième chapitre contient l'article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, qui est le fruit de recherche conjointe avec le professeur Greg Martin. Le but de cet article est d'étudier un phénomène appelé le <>, qui s'observe dans les <nombres premiers>>. Chebyshev a observé qu'il semble y avoir plus de premiers de la forme $4n+3$ que de la forme $4n+1$. De manière plus générale, Rubinstein et Sarnak ont montré l'existence d'une quantité $\delta(q;a,b)$, qui désigne la probabilité d'avoir plus de premiers de la forme $qn+a$ que de la forme $qn+b$. Dans cet article nous prouvons une formule asymptotique pour $\delta(q;a,b)$ qui peut être d'un ordre de précision arbitraire (en terme de puissance négative de $q$). Nous présentons aussi des résultats numériques qui supportent nos formules. Le troisième chapitre contient l'article \emph{Residue classes containing an unexpected number of primes}. Le but est de fixer un entier $a\neq 0$ et ensuite d'étudier la répartition des premiers de la forme $qn+a$, en moyenne sur $q$. Nous montrons que l'entier $a$ fixé au départ a une grande influence sur cette répartition, et qu'il existe en fait certaines progressions arithmétiques contenant moins de premiers que d'autres. Ce phénomène est plutôt surprenant, compte tenu du théorème des premiers dans les progressions arithmétiques qui stipule que les premiers sont équidistribués dans les classes d'équivalence $\bmod q$. Le quatrième chapitre contient l'article \emph{The influence of the first term of an arithmetic progression}. Dans cet article on s'intéresse à des irrégularités similaires à celles observées au troisième chapitre, mais pour des suites arithmétiques plus générales. En effet, nous étudions des suites telles que les entiers s'exprimant comme la somme de deux carrés, les valeurs d'une forme quadratique binaire, les $k$-tuplets de premiers et les entiers sans petit facteur premier. Nous démontrons que dans chacun de ces exemples, ainsi que dans une grande classe de suites arithmétiques, il existe des irrégularités dans les progressions arithmétiques $a\bmod q$, avec $a$ fixé et en moyenne sur $q$.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le sujet de cette thèse est l'étude des progressions arithmétiques dans les nombres entiers. Plus précisément, nous nous intéressons à borner inférieurement v(N), la taille du plus grand sous-ensemble des nombres entiers de 1 à N qui ne contient pas de progressions arithmétiques de 3 termes. Nous allons donc construire de grands sous-ensembles de nombres entiers qui ne contiennent pas de telles progressions, ce qui nous donne une borne inférieure sur v(N). Nous allons d'abord étudier les preuves de toutes les bornes inférieures obtenues jusqu'à présent, pour ensuite donner une autre preuve de la meilleure borne. Nous allons considérer les points à coordonnés entières dans un anneau à d dimensions, et compter le nombre de progressions arithmétiques qu'il contient. Pour obtenir des bornes sur ces quantités, nous allons étudier les méthodes pour compter le nombre de points de réseau dans des sphères à plusieurs dimensions, ce qui est le sujet de la dernière section.